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A hybrid procedure consisting of a high order continuum (HOC) model and the direct simulation
Monte-Carlo (DSMC) solver is proposed in this paper, as it represents a promising approach for
seamless computation of hypersonic flows in all regimes. This approach also allows the effects of
thermophysics (thermal and chemical non-equilibrium) and turbulence to be included so that gas
interactions can be modeled much more easily than in other approaches. Such hybrid procedures
can also be developed into robust and efficient parallel computing tools for practical 3D
computations. The main idea behind the proposed HOC/DSMC methodology consists of
incorporating the physically realizable and computationally stable version of the Burnett
equations into hypersonic codes that have the capability for calculating non-equilibrium

chemistry and temperature. We explore the feasibility of simplified, yet accurate and numerically
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stable, versions of the Burnett equations. We discuss such a model in detail, providing an analysis
of its stability and performance for Alsmeyer’s shock wave problem and hypersonic flow over a
sphere. We also report on the performance of the DSMC component of the proposed hybrid

scheme.

'Current Affiliation: United Technologies Research Center (UTRC), East Hartford, CT, USA

Nomenclature

Y,  Mass concentration of species s
D,  Effective diffusion coefficient for

Species s, m*/s
Dy Multicomponent diffusion coefficient
e Elementary electronic charge,

1.6022 x 10" C or total energy

per unit mass
E Electronic field, function(space, time), V/m
E.  Electronic translational energy per unit volume
€ Permittivity of free space, 8.8542 X 102, F/m
h°  Enthalpy of formation

k Boltzmann constant, 1.3807 x 102* J/K

L Characteristic length

M,  Electron mass, 9.1094 x 107! kg
M Mach number, Molecular weight
N Number density

p Pressure
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q Charge, C, or heat flux vector
Ora  Radiation heat loss term
Q Energy exchange between modes
T Translational temperature
T,  Vibrational temperature
W Mass-averaged velocity component in 3 dimensions, m/s, j=1 to 3
Us Average or mean velocity
14 Random or peculiar velocity or
diffusion velocity
Zg Ionic valency, -1 for electrons, 1
for single-ionized positive ions
T Relaxation time
7 Viscous shear stress
x Position vector in 3 dimensions, j=1 to 3
X Mole fraction
v Collision frequency
v Effective collision frequency of electrons with diatomic molecules (heavy particles)
®,; Characteristic temperature of dissociation
®, Characteristic temperature of vibration
r Flux density
@, Electron plasma frequency, 5.64 x10* rad/s
1) Source or sink of species
n Thermal conductivity coefficient

o Collision cross-section
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p,  State density in the n™ vibrational level

p  Total density, kg/m’

Subscripts
D Debye

e Electron
I Ton

n,m Species indices in quantum level

R Diatomic molecule (heavy particle)
s Species

v Vibration

oo Freestream conditions

Superscripts
i,j i™and j™ components in general
orthogonal coordinates

INTRODUCTION

Hypersonic flows over space vehicles produce flow fields with local Knudsen numbers, Kn,
which may lie in all the three regimes — continuum, transition, and rarefied. The Navier-Stokes
(NS) equations and the direct simulation Monte-Carlo (DSMC) methods can accurately and
efficiently model the flows in the continuum and rarefied regimes, respectively. Of these two
approaches, i.e., continuum and kinetic, the latter considers an ensemble of small particles or
molecules whose distribution function can be determined as a solution of the Boltzmann equation.

The former approach is based on the representation of the gas as a fluid continuum governed by
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the mass, momentum, and energy conservation laws. Although, theoretically, the kinetic approach
is appropriate for simulating gas flows in any regime; in practice, it can require prohibitively
large computational resources if the gas flow is dense. DSMC remains an efficient numerical
technique for solving the Boltzmann equation [1]. It enables the computation of flows with
Knudsen numbers Kn > 0.001 for 2D problems and K» > 0.01 in the 3D case, i.e., almost nearly
down to the continuum regime [2,3]. (Of course, these Kn values, 0.001 and 0.01, are
approximate.) Here, Kn = A/L, where A is the mean free path of the molecules and L is the
characteristic length scale of the flow. Nevertheless, DSMC computations are still too expensive
in many cases, especially for 3D engineering applications. Also, being a rather efficient tool for
supersonic and particularly hypersonic flows [3], they become more resource-consuming for low
Mach number subsonic flows, due to difficulties with boundary condition implementation on
subsonic inflow/outflow boundaries [4]. Furthermore, obtaining gas interactions with DSMC is a
difficult task. The continuum approach is much cheaper and more versatile in these regards.

There is, therefore, a strong motivation for its utilization at the low Kn values.

The traditional continuum model is based on the Navier-Stokes equations, which are the first
order approximation to the Boltzmann equation with respect to Kn as the small parameter in the
asymptotic expansion. Coupled with no velocity slip/no temperature jump solid wall boundary
conditions, they are valid if the Knudsen number is smaller than 0.001. More rarefied flows
should be described using the Navier-Stokes equations with velocity slip/temperature jump
boundary conditions. However, the flows in the transitional regime (0.1 < Kn < 10) require higher
order models, the most well-known being the Burnett equations obtained as second order
approximations with respect to Kn. Though there are some difficulties with the stability of their
solutions and the development of relevant solid wall boundary conditions, recent enhancements

[5] allow the consideration of the (modified) Burnett equations as a potential continuum model
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for transitional flows. In recent years, Burnett equations have been successfully employed to
compute 3D hypersonic flows in continuum-transition regimes [6], although it has been difficult

to compute flows for Kn>1 with the approach.

The other HOC equations, such as Eu’s [7] and Grad’s 13-moment equations [8], are significantly
more expensive to compute than the Burnett equations, and have been tested only for 1D and for
2D geometrically simple problems. Another approach is due to Aristov and Tcheremissin [9],
wherein a special quadrature formula is employed for the collision integral on the right-hand side.
This method has been applied to solve 2D problems involving a mono-atomic gas. Application of
the approach to gases with internal degrees of freedom is problematic at the moment, given the

difficulty with the inclusion of chemical reactions.

A detailed description of the DSMC method and the direct Boltzmann solver of Aristov and
Tcheremissin, as well as the discussions of their relative advantages and disadvantages, can be
found in the references. However, none of the approaches can efficiently compute all the flow

regimes that may be present on a space vehicle in hypersonic flight.

A careful examination of the options has led us to the conclusion that a hybrid high order
continuum/direct simulation Monte-Carlo (HOC/DSMC) solver represents the most promising
approach for seamless computation of hypersonic flows in all regimes. Moreover, the procedure
can easily be extended to include the effects of thermophysics (thermal and chemical non-
equilibrium) and turbulence. In addition, the proposed hybrid codes can be developed to be
robust, stable, and efficient on parallel computing platforms for practical 3D computations. The

main idea behind the proposed HOC/DSMC methodology is described below.
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The hybrid method requires for each cell: (a) the determination of which approach — continuum
or particle - is valid, and: (b) the development of interface boundary conditions, which basically
connect the two approaches at the cell interface. For each cell, whether the continuum model
breaks down or not is determined by employing a switching (or breakdown) parameter. There are
a few switching criteria that have been proposed in the literature [10,11], each of which is based
on the premise that the Navier-Stokes equations are not valid when the nonlinear terms in the
Chapman-Enskog expansion become important - when the velocity distribution function deviates
from its equilibrium state by some degree. One can use the criteria based either on the local
Knudsen number or on the ratio of the maximum shear stress to the maximum heat-flux.
However, the effectiveness of various possible criteria needs to be evaluated by numerical
experiments. Limited amount of work has been carried out on this issue, but see Boyd [12] for a
short review of breakdown prediction. In the present study, the gradient-length-local Knudsen
number discussed by Boyd has been used, although other options, such as the parameter

involving direct evaluation of heat flux tensor elements, have also been tested.

Once the cells in which the continuum model holds have been identified using the switching
criteria, the calculations for the rest of the cells in the flow field are performed with the DSMC
method. The next important issue in the hybrid method is connecting the continuum cells with the
particle cells on the interface in a seamless fashion. On one hand, the numerical fluxes calculated
by the continuum approach must be transformed into particle fluxes for the DSMC method. On
the other, the field values of macroscopic quantities such as density, velocity, pressure, and
temperature must be calculated from the ensemble in the particle simulation cells in the vicinity
of the continuum cells, since these values are needed for calculating the numerical fluxes in the
continuum scheme. For the DSMC method, we need to know the particle velocity distribution
function at the cell interface. This distribution function, which can be Maxwellian, Navier-Stokes,

or Burnett, requires the knowledge of the macroscopic density, bulk velocity, and temperature
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from the continuum cell for Maxwellian, as well as the gradients of the macroscopic quantities,
for Navier-Stoke; and the mixed gradients, for the Burnett distribution functions. This procedure
can be performed in a reverse order as well by first carrying out the DSMC computations and
then using the particle distribution functions from DSMC to compute the numerical fluxes for the

bordering continuum cells.

Both the NS and Burnett shear stress and heat flux tensors in the switching condition are
implemented in the current procedure, as are the NS and Burnett distribution functions at the
interface of the particle and continuum cells. Although it has been established conclusively that
the Burnett equations give more accurate results compared to the Navier-Stokes equations [13,
14], the results must be re-established within the context of non-equilibrium models. Therefore,
we are testing the relative merits of using NS versus Burnett shear stress and heat flux tensors and
distribution functions in the hybrid technique by analyzing a 1D model problem to ensure that the
method is robust (stable) for non-equilibrium problems. Various boundary conditions associated
with velocity slip, temperature slip and catalytic surface are formulated for the hybrid solver.
Several test cases for the hybrid solver are considered, including the shock wave problem of
Alsmeyer [15] and the computation of hypersonic flow in the vicinity of a sharp leading edge (~
100 to 300A). The latter problem is especially challenging since the flow passes through the
different regimes, from free molecular to continuum, via transitional mode. An even more
challenging problem will be an accurate simulation of the interaction of hypersonic boundary
layers with shock waves. Disagreement between the predicted length of the separation zone by
the NS and DSMC codes has been reported. Note that no one has previously reported on the

simulations of this problem with the Burnett models.

The procedure in this paper combines the Burnett equations with both thermal and chemical

nonequilibrium models, which are based on the LAURA [16] code from NASA Langley. We

8|Page



have added the Burnett and rotational temperature equations to LAURA, since the code, being
limited to translational and vibrational temperatures, did not have these capabilities. The option
for the complete 11-species equations (or subsets thereof) for chemical nonequilibrium is also
supported in the present procedure. The species-specific equations for the vibrational energy,
such as in Josyula and Bailey [17] have also been solved in our work. The addition of turbulence
models into the present framework is obviously a straightforward task and will be reported in
subsequent work. The DSMC component of the proposed hybrid scheme has been developed in-

house.

The governing equations in our code are presented in the following two sections, including a
simplified version of the Burnett equations, courtesy of Lumpkin [13]. We then discuss the
solution methodologies and the parameter space for the computation of Alsmeyer’s shock wave
problem and hypersonic flow over a sphere, which are the two problems we report on in this

paper. An appendix is provided on the coefficients that appear in the BGK Burnett equations.

GOVERNING EQUATIONS

The governing equations for the HOC component of the hybrid procedure can be written as

follows:

Species Conservation:

J o 9 J .
- - = - D —— 1

Mixture Momentum Conservation:
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Electron and Electronic Excitation Energy Conservation:
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Rotational Energy Conservation:
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Translational Energy Conservation:
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Total Energy Conservation
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The reader should consult the nomenclature section in this paper and also Gnoffo et al. [16] for

the various symbols in these equations. Note that the Tf term in the momentum equations refers

to the additional stress tensor (in the BGK Burnett equations) over that for the Navier-Stokes

G‘ 2

equations. Similarly, q refers to the additional heat flux vector. The subscript “s” represents the

“ L3

species component, “v”’ represents the vibrational mode and “e” for the electrons. We include 11
species in the modeled system. Species 1 to 5 are the neutral components of air consisting of N,
0O, N, O, and NO. Species 6 to 10 are the ions corresponding to species 1 to 5, in which one
electron has been removed. Species 11 are the free electrons. It is important to note that only the
translational and vibrational energies are included in the HOC calculations for the present results.
Moreover, the vibrational energy equation is calculated in the average form in this paper, with the
decision to focus on the extensively validated two-temperature model [12], wherein it is assumed
that the distribution of energy in both the vibrational and electronic modes can be described by a
single temperature. The two-temperature models are thus used to fit the thermodynamic property

curves for the 11 species, the collision cross sections, the transport properties, the chemical

kinetic models, and the vibrational and electronic energy relaxation models. The model details for
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physical processes such as the translational-vibrational (T-V) energy exchange and electron-

vibrational energy exchange appearing in Eqn. (3) and (4) etc., are described elsewhere [17, 18].

The BGK Burnett Equations

The physically realizable and computationally convergent version of the Burnett equations'® is
used in our HOC procedure; and is shown below. Note that the linear — with respect to the
Chapman-Enskog expansion - (Navier-Stokes) terms, denoted by superscript “(1),” are also

shown below. The values of the constants in the equations are given in the appendix.

o) =i, ~3v, <5 w)
o) =i, ~3w. 1 u)
o) =, ~3u, 3 v,)
o) = 0t = ~utu, +v,)

0 _ () _
Oy =0y =—Uv, + Wy)

(D _ () _
o5 =0 =—(w, +u)

4 ==+
4 =4,
4 ==+

The Burnett terms are given below:
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P
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RT RT RT RT RT R,
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T Oogu, + 0V HOgV oY, F oW o u Y+ o RT, +o,RT  + algRTyy

RT RT RT RT RT , RT 72
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2
0-1(22) O-éf) = (ﬂluxuy +162vxvy +ﬂ3Wny +ﬁ4uxvx +ﬂ5uyvy +166uzvz +ﬂ7un
RT
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p p

2
U
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The coefficients &, 0;, and ¥, in these equations are given in the appendix. The following

terms represent the augmented stress and heat flux terms:

(a)
(/U /p )RT{%l“m togu,, togu, oGy, oGy, T 0GY Hag W, oW+ OGeW zzz]

yzz

@ _(,3 /.2 [ ]
0-22 (Iu /p )RT a31vyyy + a32vyzz + cK33vyxx + a34 vz + a35wzzz + a36szx + a37uyyx + a38uzzx + a39uxxx

0'3(3”—(/1 / p? )RT[0(31W O W, O, O+ Ol + O+ OV m]

zzy

+ OV

xxy

+ OV

zzX XXX xyy

O-l(a) _O-(a) _(/U /p )RT[IBnuyxx +ﬂ18 yy +:B19 2z +1320 +:B21 +ﬂ22 ]

(a)

0-23 = 0-352(1) = (/—l3/p2)RT [1817vzxx +ﬂ18v2yy +ﬂ19vzzz +IBZOWyxx +ﬂ21wyyy +1822wyzz]

(a)

20-1(30)_(/‘ /p )RT[ﬁwW + Bisw, +IB19W + By, +ﬂ21 +IB22 ]

(‘1) _(/Ll /pp)Rb/ZO xxx + }/21 xyy + 722 xzz + }/23(T/p)pxxx + }/24(T/p)pxyy + }/ZS(T/p)pxzz]
(a) _(/u /pp) [7/20 yxx +721 wy +?/22 yzz +723(T/p)pyxx +7/24(T/p)pyyy +7/25(T/p)pyzz]

(”) _(/1 /pp) [}/20 zxr +}/21 zyy + }/22 zz2 +}/23(T/p)lozxx + }/24(T/p)lozyy + }/ZS(T/p)pzzz]
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The coefficients appearing in these equations are as follows:

Oy =0y =033 = W;

1
Qyy = Ohs = O = Oyy = Oy = 09 = _Ew7

By =Py =By = P = B :,32223(07

V2o=Va =72 = 97a V3=V =7Vs = 96
THE SIMPLIFIED BURNETT EQUATIONS TERMS

The complete BGK equations require too many computer operations to calculate, thereby
motivating our interest in a simplified version of the models. For this purpose, we consider a

related result from Lumpkin,"? who proposed the following simplified form:

3 u* du
t? == (p,-1/3D,5,),

e lyéfu_zﬂaﬂ
2 pT, ox, ox,

i

Familiar notations are used in these expressions and

p =L o)
Yoo20lox7 o'
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However, @ is a stress coefficient and ¢ is a heat flux coefficient. Note that the temperature that
appears in the heat flux terms is the translational temperature. In the calculations,

8

@ =8 and 9:((91 +-6, +%(93 +2,95j.
3 3 3

The constants in this equation are defined in Table Al.

Other than the investigation in [13], the simplified Burnett equations have not received attention.
To learn more about this model, we carried out a linear stability analysis in which the spatial
wave number is related to the Knudsen number. To this end, the equations can be written as
follows, noting that they contain the translational and Rotational Non-equilibrium terms for a

diatomic gas:

ap ) o
ot ox
Ipu) 9 )\ 97,
TRl
IpE) 0 Jq
—- Eu) = —— -1,
o o lputpEu) =~z ) ==
d(oT, 0°T, 4pp(6T -T
(p R)+—(puTR)— 2R ,OP( R),
ot a a Smuz ,
To=|—5H ly =12, 8_u+8,uz (a—uJ ,
3 4 ox p \ox

15 0T, 40 u’ (ou) oT, oT,
et SOl el (il B P >
4'uRax+9th(axj(axj #

where

1
E= 5 (3RTt +2RT, +u’ )= total energy/unit mass,
p = PRT, = hydrodynamic pressure,
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T, = rotational temperature,
T, = translational temperature,
M = molecular viscosity,

Z , = rotational collision number (18 to 23).

T . 7y ..
Note that 7, = relaxation time for rotational energy =Z,7. = Z, (4—”) and 7,= mean collision
pP

time.

Linearization of the equations

Consider a diatomic gas in equilibrium with density p,,, pressure p,,, translational temperature
T, and rotational temperature 7, . The gas is subjected to small perturbations defined as the non-

dimensional variables:

pv:p_po’ Tt.:Tz_Tzo, TquTR_TRO
Po T, Ty
' u ' t ' X
u= , r= , X'=—
RT, Mo/ Py L,
L, = #o Note that 7y, =T,

The linearization results in the following equations in non-dimensional form for small

perturbations:
o' ox'
ou' dp' JT' 4 & 2 J’u'
AL A TR B PV | N/ Ry 10
8t'+8x‘+8x‘+( DA Rjax'z (1o
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+ =
o' 3 dt' 3ox' 20x” 3 ox”

(11

' 2 '
o' ox" SnZ, rZ,

Let C =

. The last equation becomes
SrZ ,

BTR'_azTR'
o' ox"

—C[11T,'-T,'+10p']=5C (12)

From equation (12)

oT,' 9’T,'

==+ C[UIT, =T, +10p'+5]
X

Substituting this into equation (11), we obtain

oT' 20u' 59°T' 2
= +=C[IT'-T,'+10p'+5]=0 13
o 3o 2o 3 U0 (1)

We employ equations 9 through 12 in the stability analysis.
Stability Analysis of Linearized Equations

We write the linearized equations as follows:

v v’ !
o e T TRV A (14

where V'=[p" u' T' T,

t

and
0 1 0 0
o 10
"lo 2/3 0 0
0 0 0 0
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0
L, =
0
_0
[0
0
L,=C &
3
-10
0
0
A=
_10-
3
5C

Consider the homogeneous equation (13) for stability:

We assume solutions of the form

where

p=0a+iff, o=

Substituting (15) into (14), we obtain

The dispersion relation therefore becomes

or
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det|gl +iwl, —’L, +L,|=0,
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A

(14)

— 07831, w= 4927 =4.92K,,.



P i 0 0
v ¢+ i—z(;f—l)ZR o’ i@ 0
3 4 ~0
§C z‘za) ¢+§a)2+2C —EC
3 3 2 3 3
-10C 0 -11C ¢+ +C

This can be simplified to

4 r 5
+ =——=(y-1)Z, @
¢ [3 4(}/ )R} iw 0
) 20 ¢)+§a)2+2C _2¢
3 2 3 3
0 -11C o+’ +C
iw iw 0
_l,w_20C ¢+§w2+2C —EC =0,
3 2 3 3
-10C -11C ¢+(02+C

{4“{%‘%(7—1)%}0)2}{(%%0)2 +%CJ(¢+¢02 +C)_%cz}

2 5 22 22
—-9i'w’ =(¢p+ @’ +C)-i’w’ ( +—a)2+—CJ +@’+C)-=C?
03 (orw +0)-rw | (pr3 0+ 2 forwr +0)-

+iza){(¢+a)2+c)§C—§C2} =0,
3 3
or

5 , 22 ) 22 10l o (4 2 2
ot ot v

20 20 }:0.

2 2 2 2 2
+o &gp(ma) +C)-(¢+ +c)?c+?c

22|Page



The final form of the equation was solved using MATLAB in order to determine the stability
boundaries for Z,=4, 10, 18, and 23. Note that in Bird’s text, a value of approximately 5 is used,
although Lumpkin recommended 18 < Z, <23 for his simplified model. Also note that Jean’s

equation [19] has been used in the foregoing, in order to obtain the source term.

The stability boundaries are shown in Figures 1 through 4 below for the various values of Z,.
Regions with negative values of & (on the x-axis) are stable, whereas regions with & > Q are
unstable. The main parameter is Zz and Gamma=1.4 for a diatomic gas. Note that @ = & +if3, so

that & must be negative for stability.

Zr=4
25 T T T T T

16F ! .

0.4

I:IF'I' o W MFE R F R B W B D

O
m
T
-

dizpersion coeficient beta

25 1 1 1 1 1
-5 -4 -3 -2 -1 0 1

attenustion coefficient alpha

Figure 1: Stability boundaries of Lumpkin’s simplified Burnett model for Z, =4
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Figure 2: Stability boundaries of Lumpkin’s simplified Burnett model for Z, =10
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Figure 3: Stability boundaries of Lumpkin’s simplified Burnett model for Z, =18
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Figure 4: Stability boundaries of Lumpkin’s simplified Burnett model for Z, =23

It is appararent that the equations are unstable to small perturbations in a quiescent fluid when

Z,> 10 and stable otherwise. Thus, although the simplified model seems to work well in some

cases, it will be necessary use either the Augmented or BGK-Burnett model to include the

rotational non-equilibrium. Note that @ =4.92K , and that the stability boundaries have been
determined by varying the K, from 0 to 1 using 100 points. We have also examined the stability
of a one-dimensional Augmented Burnett equations for Z,=4,18, and 23 (not shown) and found

it to be stable for Z,> 23, with the appropriate choice of coefficients. This suggests the

superiority of the augmented Burnett equations over Lumpkin’s simplified model.
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HOC Calculations

In this section, we report on the calculation of Alsmeyer [15] hypersonic shock tube
measurements and flow over a sphere. For the shock tube problem, we compare results obtained
with the HOC methods with measurements and the DSMC results. The DSMC code used for the
present demonstration was developed in-house. Results are presented for Argon and Nitrogen
(N»). For the sphere, we compare HOC results with those from Navier-Stokes (NS) and DSMC.
Note that the base NS code in the HOC procedure is LAURA [16], to which we have added the

Burnett terms during the course of the present investigation.

The initial  conditions for the shock tube problem are as follows:

T, =300K, p, =3.51x107°, p, = l/ﬂ\/llz,where various values of M in the range
1.55< M <11 are specified. ¥ =(1.4,1.667) for N> and Ar, respectively. The initial values

T,,p,,p,,and M Jat the other end of the shock wave were obtained with the Rankine-Hugoniot

relations. For the perfect gas calculations, Sutherland law is used for the dynamic viscosity:

3/2
u _(TJ T,+S

T T+

T where S=(1.4,107,111) for argon, nitrogen, and air, respectively,
0

b

and 7, = 273 K. Prandtl number, Pr, is 0.71, and thermal conductivityk = C 1/ Pr, where C is

the specific heat at constant pressure. The thermodynamic property calculation procedures
described in [16] are used to obtain the values of these quantities for the nonequilibrium
calculations. For boundary conditions, we specify the values of the variables at the inflow to the
shock wave and zero-gradient at the other boundaries. The translational and (mean) vibrational
temperatures are computed. The domain runs from -10 to 10, after being normalized by the mean

free path, 4 =(0.0175,0.02566) for N, and Ar, respectively. The following table summarizes

the conditions used for the DSMC calculations for M, =11 (Ar) and M, =10 (N>).
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Table I Parameters for the DSMC calculations

Parameter Ar N,
Number of particles at end 20,000 18,440
of simulation
Number cells, N 300 300
Upstream A or A, 1.47195x107  1.31746x107
Number density, n 1.0x10% 1.0x10%
Upstream density, p, 6.63x107° 4.65%107°
Upstream temperature, 7, 293K 293K
Z, N/A (monoatomic) 5
a Hio (T /T,y )w Mo (T /Ty )w
Mo 2.117x107 1.656x107
T, 273K 273K
@ 72 72
Molecular model VSS,a=1.4 VHS
Total number of time steps 800,000 800,000
Time step for first sampling 8,000 8,000
Frequency of sampling 4 4
Total number of samples 2%10° 2%10°
At 0.75%x107° 0.75x107°

For the hypersonic flow over a sphere, we tested the cases:
U_ =2500m/s,T_ =300K, p_ =3.51x10"%kg / m’,

U_ =5000,7_ =300K,p_ =3.51x10"kg /m",



U. =2500,7, =200K, p_ = 0.001,and U_ =5000,7_ =200K,p_ = 0.001.
(Pr=0.71 in all cases.) Unit of density is kg/m’, while velocity is in m/s. The upstream conditions
are used as the initial conditions for the HOC calculations. For DSMC, a zero initial value for

every variable is used. This is essentially a steady calculation via time-stepping. A total of 1500

time steps were required to drive the residual smaller than 1x107°. Zero-gradient conditions are
applied at the outflow. Symmetry conditions are used to solve half of the domain in HOC. The

whole domain is analyzed for the DSMC calculations, using a grid of 100x100x100.

RESULTS, DISCUSSIONS, AND CONCLUSIONS
The shock tube calculations are shown in Figures 5 through 11 while the hypersonic sphere
calculations are shown in Figures 12 through 23. Note that the emphasis in the results is placed on
the performance of the Burnett equations. That is, in relation to the experiments or the DSMC
calculations, which are used as the "standard." It is apparent in Figure 5 that the simplified
Burnett models show considerable improvement over the Navier-Stokes calculations for both
perfect gas (PG) and non-equilibrium (NE) calculations. We also see in this figure that the non-
equilibrium results are more accurate (than the perfect gas results). Figure 6 shows that the results
from our DSMC procedure compare very well with those from the experiments of Alsmeyer. The
experimental results in Figure 7 are intermediate between the results from the simplified Burnett
models and the DSMC solutions, showing that some differences do indeed exist between the
DSMC results and Alsmeyer's measurements for nitrogen. However, the results from the two
methods are close - both are able to predict the overshoot in the translational temperature, when
compared with the simplified Burnett results. The calculation of the translational temperature by
the Burnett model is unsatisfactory. Note that in Figure 7, the density results agree more than the

translational temperature results do, supporting the suggestion of the inadequacy of the non-

equilibrium temperature models used.
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Figure 8 shows superior performance of the Burnett models relative to the Navier-
Stokes calculations, particularly at the higher Mach numbers. Comparison of Figure 7
(N2) and Figure 9 (Ar) clearly shows superior performance (for translational energy) of
the simplified Burnett equations for Ar relative to N2. This is probably due to the neglect
of the rotational temperature in the present HOC calculations. Being diatomic, rotational
energy must be included in the calculations for nitrogen (Lumpkin [13]). Fairly good
results for the reciprocal thickness by the simplified Burnett equations can also be

observed (Figure 11).

Concerning the hypersonic flow over a sphere, we see in Figures 12 through 15
that the Burnett equations give superior results compared to the the Navier-Stokes model
(thicker layers) for the various cases. In Figure 16, the need for the inclusion of better
temperature models, e.g. the addition of rotational or multi-species vibrational models, is
indicated, although the Burnett results are significantly superior to the Navier-Stokes
results. Figure 19 shows the profiles of the translational temperature and the mean
vibrational temperature, confirming that the non-equilibrium temperature situation exists
in this problem. Figure 21 shows evidence of non-equilibrium chemistry, which must be
allowed in order to correctly calculate the hypersonic sphere problem. Note that the mass
fractions of the nitrogen molecule are dominant relative to those of the nitrogen atom.
However, the latter quantities are significant. Figure 20 (Ux=5000 m/s) shows very large
values of density compared to the results in Figure 18 (Ux=2500 m/s), a direct

consequence of the extent of compressibility (Mach number). The discrepancy between
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the Navier-Stokes and Burnett results is shown in Figure 17. From Figure 22, we see that
non-equilibrium effects are negligible close to the wall, when Usx = 5000 m/s, whereas
they are apparent when 0.05< x<0.1.

In conclusion, we have developed and tested a unified numerical methodology for
calculating flows involving the continuum and rarefied regimes, as well as the
transitional regime. The superiority of a simplified Burnett model over the Navier-Stokes
model has been demonstrated with the Alsmeyer's shock tube problem and hypersonic
flow over a sphere. The calculations were carried out in a model environment that
includes both thermal and chemical non-equilibrium. The Burnett models constitute a
component of our proposed hybrid scheme, which models the purely continuum regime
and high order corrections to this regime in the non-equilibrium realm. We have also
shown the performance of our DSMC solver, which constitutes the other component of
the hybrid scheme. Note that the addition of rotational temperature is necessary to model
the hypersonic flow of diatomic gases. Although the results presented in this paper

neglected these effects, these capabilities are contained in our HOC model.

Acknowledgements

The work reported in this paper is supported by the United States Air Force Research Laboratory.

We appreciate the support provided by Dr. Peter Gnoffo of NASA Langley Research Center.

Peter developed the original LAURA code.

30|Page



0.8

o O
o7 M e}
g A X A
w O6F A,
B a
- i
i 05 F O o u]
= N
sl u ] =
E F A =]
g 0.3 g 7 - "
¢ [ =
o« 02E A Navier-Stokes (NE) I
“r ] Simplified Burnett (NE)
F Exp.
01 O Navier-Stokes (PG)
r O Simplified Burnett (PG)
I/ —+—— DSMC
oL P I N it 1 Ll
2 4 8 10

6
Ma_

Figure 5: Shock wave reciprocal thickness for nitrogen

(T-T)NT,-T,)

T=

b)

E N,

- ,, g8 o0 oo 00g

F i

F i

3 »®

F Vod

2 ¢

E /

F 14

F o

g 4 ~ -~ - T:DSMC

- 9 — —»— — T.:Experiment

F /

- o

- /

F [ %

F [ 1

E i

E «®

tanooe®® " 1 I

1 5 0 5 10
x/\

Figure 6: Mach 10 temperature profiles for nitrogen

31|Page



12
| 0. -
11E /@;”@@
E N, PP BO o
- Sq
N g/
09F /o
~08F ?
= o /o
~ 0.7 &
s 4
SosfF N
I s / p: Simplified Burpett
< 04F ----3---- T:Simplified Burpett
- —c—— p:DSMC
03F A ~ -0~ - T;DSMC
- g ———— 'r: Experiment
02 F @(7) — —>— — Tz Experiment
01F o9
v -10 -5 x(l)k 5 10

Figure 7: Density and temperature for nitrogen at Mach 10

4
| A [ ] Navier-Stokes
c - A Simplified Burnett
6 351 DSMC
=
(] [
g |
o 3
w -
2 [
7] [
S 25
o [
e L
Ei [
s 2
@ [
n -
£ [
2 isf
1 i L l L L L l L L l L l L
2 6 8 10
o Ma

Figure 8: Temperature-density separation for argon

32|Page



1 A=t
n Ar
09|
0.8 |
~07F
<t
06
< B
S 05
= -
h—d [
n_04p I
E=s - / ——— p: Simplified Burnett
03k — — — — T:Simplified Burnett
“F - p: Navier-Stokes
0.2 L xS e T: Navier-Stokes
“E ——s—— p:DSMC
o1k ——+— T:DSMC
s ‘ - ]
0 -5 0 5
d) x/}\'

>
2

,,,,,,,,, Simplified Byrnett
— — — — Navier-Stokds
DSMC

o
' N
=) BAREE RAEAN LERES RENRE REREN RANEE LEAREE REARE RAREE RERE

b)

Figure 10: Density profile for argon at Mach 11

33|Page



07
L. A Navier-Stokes
= [ | Simplified Burnett
0.6 = —F—  Exp.
i O DSMC
@ 05
o i
c [
ﬁ B
2 04
< N
F | A 4 A A
s | A A
8 03l
o 0Sr
2 -
(3] 3 |
0 »
c 02 u @ @
- [ |
01
1 I 1 1 I 1 I I L I L
0 2 4 6 8 10
a) Ma

Figure 11: Shock wave reciprocal thickness for argon at Mach 11
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Figure 12: Translational temperature for hypersonic flow over a sphere
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Figure 13: Translational temperature for hypersonic flow over a sphere

U_=2500, p_=3.51x10"°

1.5

3013.16
2812.28
2611.4

Navier-Stokes 2410.53
2209.65
2008.77
1807.89
1607.02
1406.14
1205.26
1004.39
803.509
602.632
401.754
200.877

Simplified Burnett

= I | I I | I Ll I | I | I | I
-0.5 0 0.5 1 1.5 2 25 3 3.5
a) Z

Figure 14: Translational temperature for hypersonic flow over a sphere
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Figure 15: Translational temperature for hypersonic flow over a sphere
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Figure 16: Translational temperature over the surface of the sphere
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Figure 17: Translational temperature over the surface of the sphere
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Figure 18: Density profile over the surface of the sphere
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Figure 19: Translational and rotational temperatures along the symmetry axis in front of the

sphere
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Figure 20: Density profile over the surface of the sphere
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Figure 21: Mass fraction of nitrogen atom and molecule along the symmetry axis in front of the

sphere
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Figure 22: Translational and vibrational temperature along the symmetry axis in front of the

sphere
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Figure 23: Mass fraction of nitrogen atom and molecule over the surface of the sphere
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APPENDIX: COEFFICIENTS OF THE BURNETT-ORDER STRESS AND HEAT FLUX
TERMS

The coefficients of the Burnett-order (second order) stress and heat flux terms are as follows:

2 14 2 1 1
o, =§a)l—ga)2 +§a)6, o, :§a)2 +Ea)6
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The coefficients @, and 6, are given in Table Al.

Table A1 Coefficient in the Burnett equations
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Coefficient Maxwellian gas Hard-sphere gas

o, 10/3 4.056
w, 2 2208
w, 3 2418
o, 0 0.681
o, 3 0219
@, 8 7.424
6 75/8 11.644
6, -45/8 -5.822
6, 3 -3.090
6, 3 2418
6, 117/4 25.157
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