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A hybrid procedure consisting of a high order continuum (HOC) model and the direct simulation 

Monte-Carlo (DSMC) solver is proposed in this paper, as it represents a promising approach for 

seamless computation of hypersonic flows in all regimes. This approach also allows the effects of 

thermophysics (thermal and chemical non-equilibrium) and turbulence to be included so that gas 

interactions can be modeled much more easily than in other approaches.  Such hybrid procedures 

can also be developed into robust and efficient parallel computing tools for practical 3D 

computations. The main idea behind the proposed HOC/DSMC methodology consists of 

incorporating the physically realizable and computationally stable version of the Burnett 

equations into hypersonic codes that have the capability for calculating non-equilibrium 

chemistry and temperature. We explore the feasibility of simplified, yet accurate and numerically 
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stable, versions of the Burnett equations. We discuss such a model in detail, providing an analysis 

of its stability and performance for Alsmeyer’s shock wave problem and hypersonic flow over a 

sphere. We also report on the performance of the DSMC component of the proposed hybrid 

scheme. 

__________________________ 

Current Affiliation: United Technologies Research Center (UTRC), East Hartford, CT, USA 
 

Nomenclature 

 

Ys Mass concentration of species s 

Ds Effective diffusion coefficient for 

Species s, m2/s 

Dsk Multicomponent diffusion coefficient 

e Elementary electronic charge,  

1.6022 × 10-19 C or total energy 

 per unit mass 

E Electronic field, function(space, time), V/m 

Ee Electronic translational energy per unit volume 

o Permittivity of free space, 8.8542 × 10-12, F/m  

ho Enthalpy of formation 

k Boltzmann constant, 1.3807 × 10-23 J/K 

L Characteristic length 

Me Electron mass, 9.1094 × 10-31 kg 

M Mach number, Molecular weight 

N Number density 

p Pressure 
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q Charge, C, or heat flux vector 

Qrad Radiation heat loss term 

Q Energy exchange between modes 

T Translational temperature 

Tv Vibrational temperature 

uj Mass-averaged velocity component in 3  dimensions, m/s, j=1 to 3 

us Average or mean velocity 

V Random or peculiar velocity or 

 diffusion velocity 

Zs Ionic valency, -1 for electrons, 1 

 for single-ionized positive ions 

τ Relaxation time 

τij Viscous shear stress 

xj Position vector in 3 dimensions, j=1 to 3 

X Mole fraction 

ν Collision frequency 

ν*
er Effective collision frequency of electrons with diatomic molecules (heavy particles) 

Θd Characteristic temperature of dissociation 

Θv Characteristic temperature of vibration 

Γ Flux density 

ωpe Electron plasma frequency, 5.64 ×104 rad/s 

ω Source or sink of species 

η′ Thermal conductivity coefficient 

σ Collision cross-section 
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ρn State density in the nth vibrational level 

ρ Total density, kg/m3 

  

 Subscripts 

D Debye 

e Electron 

I Ion 

n,m Species indices in quantum level 

R Diatomic molecule (heavy particle) 

s Species 

v Vibration 

∞ Freestream conditions 

  

    Superscripts 

i, j ith and jth components in general  

orthogonal coordinates 

INTRODUCTION 

 

Hypersonic flows over space vehicles produce flow fields with local Knudsen numbers, Kn, 

which may lie in all the three regimes – continuum, transition, and rarefied. The Navier-Stokes 

(NS) equations and the direct simulation Monte-Carlo (DSMC) methods can accurately and 

efficiently model the flows in the continuum and rarefied regimes, respectively.  Of these two 

approaches, i.e., continuum and kinetic, the latter considers an ensemble of small particles or 

molecules whose distribution function can be determined as a solution of the Boltzmann equation. 

The former approach is based on the representation of the gas as a fluid continuum governed by 
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the mass, momentum, and energy conservation laws. Although, theoretically, the kinetic approach 

is appropriate for simulating gas flows in any regime; in practice, it can require prohibitively 

large computational resources if the gas flow is dense. DSMC remains an efficient numerical 

technique for solving the Boltzmann equation [1]. It enables the computation of flows with 

Knudsen numbers Kn ≥ 0.001 for 2D problems and Kn ≥ 0.01 in the 3D case, i.e., almost nearly 

down to the continuum regime [2,3]. (Of course, these Kn values, 0.001 and 0.01, are 

approximate.) Here, Kn = λ/L, where λ is the mean free path of the molecules and L is the 

characteristic length scale of the flow. Nevertheless, DSMC computations are still too expensive 

in many cases, especially for 3D engineering applications. Also, being a rather efficient tool for 

supersonic and particularly hypersonic flows [3], they become more resource-consuming for low 

Mach number subsonic flows, due to difficulties with boundary condition implementation on 

subsonic inflow/outflow boundaries [4]. Furthermore, obtaining gas interactions with DSMC is a 

difficult task. The continuum approach is much cheaper and more versatile in these regards. 

There is, therefore, a strong motivation for its utilization at the low Kn values.  

 

The traditional continuum model is based on the Navier-Stokes equations, which are the first 

order approximation to the Boltzmann equation with respect to Kn as the small parameter in the 

asymptotic expansion. Coupled with no velocity slip/no temperature jump solid wall boundary 

conditions, they are valid if the Knudsen number is smaller than 0.001. More rarefied flows 

should be described using the Navier-Stokes equations with velocity slip/temperature jump 

boundary conditions. However, the flows in the transitional regime (0.1 < Kn < 10) require higher 

order models, the most well-known being the Burnett equations obtained as second order 

approximations with respect to Kn. Though there are some difficulties with the stability of their 

solutions and the development of relevant solid wall boundary conditions, recent enhancements 

[5] allow the consideration of the (modified) Burnett equations as a potential continuum model 



6 | P a g e  
 

for transitional flows. In recent years, Burnett equations have been successfully employed to 

compute 3D hypersonic flows in continuum-transition regimes [6], although it has been difficult 

to compute flows for Kn>1 with the approach. 

 

The other HOC equations, such as Eu’s [7] and Grad’s 13-moment equations [8], are significantly 

more expensive to compute than the Burnett equations, and have been tested only for 1D and for 

2D geometrically simple problems. Another approach is due to Aristov and Tcheremissin [9], 

wherein a special quadrature formula is employed for the collision integral on the right-hand side. 

This method has been applied to solve 2D problems involving a mono-atomic gas. Application of 

the approach to gases with internal degrees of freedom is problematic at the moment, given the 

difficulty with the inclusion of chemical reactions.   

 

A detailed description of the DSMC method and the direct Boltzmann solver of Aristov  and 

Tcheremissin, as well as the discussions of their relative advantages and disadvantages, can be 

found in the references. However, none of the approaches can efficiently compute all the flow 

regimes that may be present on a space vehicle in hypersonic flight. 

  

A careful examination of the options has led us to the conclusion that a hybrid high order 

continuum/direct simulation Monte-Carlo (HOC/DSMC) solver represents the most promising 

approach for seamless computation of hypersonic flows in all regimes. Moreover, the procedure 

can easily be extended to include the effects of thermophysics (thermal and chemical non-

equilibrium) and turbulence.  In addition, the proposed hybrid codes can be developed to be 

robust, stable, and efficient on parallel computing platforms for practical 3D computations. The 

main idea behind the proposed HOC/DSMC methodology is described below. 
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The hybrid method requires for each cell: (a) the determination of which approach – continuum 

or particle -  is valid, and: (b) the development of interface boundary conditions, which basically 

connect the two approaches at the cell interface. For each cell, whether the continuum model 

breaks down or not is determined by employing a switching (or breakdown) parameter. There are 

a few switching criteria that have been proposed in the literature [10,11], each of which is based 

on the premise that the Navier-Stokes equations are not valid when the nonlinear terms in the 

Chapman-Enskog expansion become important - when the velocity distribution function deviates 

from its equilibrium state by some degree. One can use the criteria based either on the local 

Knudsen number or on the ratio of the maximum shear stress to the maximum heat-flux. 

However, the effectiveness of various possible criteria needs to be evaluated by numerical 

experiments. Limited amount  of work has been carried out on this issue, but see Boyd [12] for a 

short review of breakdown prediction. In the present study, the gradient-length-local Knudsen 

number discussed by Boyd has been used, although other options, such as the parameter 

involving direct evaluation of heat flux tensor elements, have also been tested. 

 

Once the cells in which the continuum model holds have been identified using the switching 

criteria, the calculations for the rest of the cells in the flow field are performed with the DSMC 

method. The next important issue in the hybrid method is connecting the continuum cells with the 

particle cells on the interface in a seamless fashion. On one hand, the numerical fluxes calculated 

by the continuum approach must be transformed into particle fluxes for the DSMC method. On 

the other, the field values of macroscopic quantities such as density, velocity, pressure, and 

temperature must be calculated from the ensemble in the particle simulation cells in the vicinity 

of the continuum cells, since these values are needed for calculating the numerical fluxes in the 

continuum scheme.  For the DSMC method, we need to know the particle velocity distribution 

function at the cell interface. This distribution function, which can be Maxwellian, Navier-Stokes, 

or Burnett, requires the knowledge of the macroscopic density, bulk velocity, and temperature 
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from the continuum cell for Maxwellian, as well as the gradients of the macroscopic quantities, 

for Navier-Stoke; and the mixed gradients, for the Burnett distribution functions. This procedure 

can be performed in a reverse order as well by first carrying out the DSMC computations and 

then using the particle distribution functions from DSMC to compute the numerical fluxes for the 

bordering continuum cells.  

 

Both the NS and Burnett shear stress and heat flux tensors in the switching condition are 

implemented in the current procedure, as are the NS and Burnett distribution functions at the 

interface of the particle and continuum cells. Although it has been established conclusively that 

the Burnett equations give more accurate results compared to the Navier-Stokes equations [13, 

14], the results must be re-established within the context of non-equilibrium models. Therefore, 

we are testing the relative merits of using NS versus Burnett shear stress and heat flux tensors and 

distribution functions in the hybrid technique by analyzing a 1D model problem to ensure that the 

method is robust (stable) for non-equilibrium problems. Various boundary conditions associated 

with velocity slip, temperature slip and catalytic surface are formulated for the hybrid solver. 

Several test cases for the hybrid solver are considered, including the shock wave problem of 

Alsmeyer [15] and the computation of hypersonic flow in the vicinity of a sharp leading edge (~ 

100 to 300λ). The latter problem is especially challenging since the flow passes through the 

different regimes, from free molecular to continuum, via transitional mode. An even more 

challenging problem will be an accurate simulation of the interaction of hypersonic boundary 

layers with shock waves.  Disagreement between the predicted length of the separation zone by 

the NS and DSMC codes has been reported. Note that no one has previously reported on the 

simulations of this problem with the Burnett models.  

 

The procedure in this paper combines the Burnett equations with both thermal and chemical 

nonequilibrium models, which are based on the LAURA [16] code from NASA Langley. We 
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have added the Burnett and rotational temperature equations to LAURA, since the code, being 

limited to translational and vibrational temperatures, did not have these capabilities. The option 

for the complete 11-species equations (or subsets thereof) for chemical nonequilibrium is also 

supported in the present procedure. The species-specific equations for the vibrational energy, 

such as in Josyula and Bailey [17] have also been solved in our work. The addition of turbulence 

models into the present framework is obviously a straightforward task and will be reported in 

subsequent work. The DSMC component of the proposed hybrid scheme has been developed in-

house. 

 

The governing equations in our code are presented in the following two sections, including a 

simplified version of the Burnett equations, courtesy of Lumpkin [13]. We then discuss the 

solution methodologies and the parameter space for the computation of Alsmeyer’s shock wave 

problem and hypersonic flow over a sphere, which are the two problems we report on in this 

paper. An appendix is provided on the coefficients that appear in the BGK Burnett equations.  

 

GOVERNING EQUATIONS 

 

  The governing equations for the HOC component of the hybrid procedure can be written as 

follows:  
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Vibrational Energy Conservation (multi-component): 
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Electron and Electronic Excitation Energy Conservation: 
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Rotational Energy Conservation: 
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Translational Energy Conservation: 
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Total Energy Conservation 
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The reader should consult the nomenclature section in this paper and also Gnoffo et al. [16] for 

the various symbols in these equations. Note that the B
ijτ  term in the momentum equations refers 

to the additional stress tensor (in the BGK Burnett equations) over that for the Navier-Stokes 

equations. Similarly, B
iq  refers to the additional heat flux vector. The subscript “s” represents the 

species component, “v” represents the vibrational mode and “e” for the electrons. We include 11 

species in the modeled system. Species 1 to 5 are the neutral components of air consisting of N, 

O, N2, O2, and NO. Species 6 to 10 are the ions corresponding to species 1 to 5, in which one 

electron has been removed. Species 11 are the free electrons. It is important to note that only the 

translational and vibrational energies are included in the HOC calculations for the present results. 

Moreover, the vibrational energy equation is calculated in the average form in this paper, with the 

decision to focus on the extensively validated two-temperature model [12], wherein it is assumed 

that the distribution of energy in both the vibrational and electronic modes can be described by a 

single temperature. The two-temperature models are thus used to fit the thermodynamic property 

curves for the 11 species, the collision cross sections, the transport properties, the chemical 

kinetic models, and the vibrational and electronic energy relaxation models. The model details for 
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physical processes such as the translational-vibrational (T-V) energy exchange and electron-

vibrational energy exchange appearing in Eqn. (3) and (4) etc., are described elsewhere [17, 18].     

 

The BGK Burnett Equations 

The physically realizable and computationally convergent version of the Burnett equations18 is 

used in our HOC procedure; and is shown below. Note that the linear – with respect to the 

Chapman-Enskog expansion - (Navier-Stokes) terms, denoted by superscript “(1),” are also 

shown below. The values of the constants in the equations are given in the appendix. 
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The Burnett terms are given below: 
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The coefficients ,, ii βα  and iγ  in these equations are given in the appendix. The following 

terms represent the augmented stress and heat flux terms: 
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a wwwvvvuuuRTp 393837363534333231

23)(
11 / αααααααααμσ ++++++++=

 

 

( ) [ ]xxxzzxyyxzxxzzzyyzyxxyzzyyy
a uuuwwwvvvRTp 393837363534333231

23)(
22 / αααααααααμσ ++++++++=

 

 

( ) [ ]yyyxxyzzyxyyxxxzzxzyyzxxzzz
a vvvuuuwwwRTp 393837363534333231

23)(
33 / αααααααααμσ ++++++++=

 

 

( ) [ ]xzzxyyxxxyzzyyyyxx
aa vvvuuuRTp 222120191817

23)(
21

)(
12 / ββββββμσσ +++++==

 

 

( ) [ ]yzzyyyyxxzzzzyyzxx
aa wwwvvvRTp 222120191817

23)(
32

)(
23 / ββββββμσσ +++++==

 

 

( ) [ ]zzzzyyzxxxzzxyyxxx
aa uuuwwwRTp 222120191817

23)(
13

)(
31 / ββββββμσσ +++++==

 

 

( ) ( ) ( ) ( )[ ]xzzxyyxxxxzzxyyxxx
a TTTTTTRpq ρργρργρργγγγρμ //// 252423222120

3)(
1 +++++=  

 

( ) ( ) ( ) ( )[ ]yzzyyyyxxyzzyyyyxx
a TTTTTTRpq ρργρργρργγγγρμ //// 252423222120

3)(
2 +++++=  

 

( ) ( ) ( ) ( )[ ]zzzzyyzxxzzzzyyzxx
a TTTTTTRpq ρργρργρργγγγρμ //// 252423222120

3)(
3 +++++=  
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The coefficients appearing in these equations are as follows: 

7333231 ωααα ===  

 

7393837363534 2
1 ωαααααα −======  

 

7222120191817 4
3 ωββββββ ======  

 

,7222120 θγγγ ===  6252423 θγγγ ===  

 

THE SIMPLIFIED BURNETT EQUATIONS TERMS 

 

The complete BGK equations require too many computer operations to calculate, thereby 

motivating our interest in a simplified version of the models. For this purpose, we consider a 

related result from Lumpkin,13  who proposed the following simplified form:  

( )ijkkij
k

kB
ij DD

x
u

p
δμϖτ 3/1

2
3 2

−
∂
∂

= , 

k

k

i

t

t

B
i x

u
x
T

T
q

∂
∂

∂
∂

=
ρ
μϑ

2

2
3

. 

 

Familiar notations are used in these expressions and  

∂
∂+

∂
∂= i

j

j

i

ij x
u

x
uD

2
1

. 



18 | P a g e  
 

 However, ϖ is a stress coefficient and ϑ  is a heat flux coefficient. Note that the temperature that 

appears in the heat flux terms is the translational temperature. In the calculations, 

8=ϖ  and +++= 5321 3
2

3
2

3
8 θθθθθ . 

The constants in this equation are defined in Table A1. 

 

Other than the investigation in [13], the simplified Burnett equations have not received attention. 

To learn more about this model, we carried out a linear stability analysis in which the spatial 

wave number is related to the Knudsen number. To this end, the equations can be written as 

follows, noting that they contain the translational and Rotational Non-equilibrium terms for a 

diatomic gas: 

( ) 0=
∂

∂+
∂
∂

x
u

t
ρρ

, 

( ) ( )
x

up
xt

u xx

∂
∂

−=+
∂
∂+

∂
∂ τρρ 2 , 

( ) ( ) ( )
x
qu

x
Eupu

xt
E

xx ∂
∂−

∂
∂−=+

∂
∂+

∂
∂ τρρ

, 

( ) ( ) ( )
R

RtR
R

R

Z
TTp

x
TuT

xt
T

πμ
ρμρρ

5
64

2

2 −
+

∂
∂

=
∂
∂+

∂
∂

, 

( ) 222 8
4
1

3
4

∂
∂+

∂
∂−

+−=
x
u

px
uZ R

xx
μγπμμτ , 

x
TR

x
T

x
u

Tx
T

Rq Rt

t

t

∂
∂

−
∂
∂

∂
∂+

∂
∂

−= μ
ρ
μμ

2

9
40

4
15

, 

where 

( )223
2
1 uRTRTE Rt ++= = total energy/unit mass, 

tRTp ρ= = hydrodynamic pressure, 
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RT = rotational temperature, 

tT = translational temperature, 

μ = molecular viscosity, 

RZ = rotational collision number (18 to 23). 

Note that Rτ = relaxation time for rotational energy = =
p

ZZ RcR 4
πμτ  and cτ = mean collision 

time. 

 

Linearization of the equations 

 

Consider a diatomic gas in equilibrium with density 0ρ , pressure 0p , translational temperature 

0tT and rotational temperature 0RT . The gas is subjected to small perturbations defined as the non-

dimensional variables: 

0

0'
ρ

ρρρ −
= ,  

0

0'
t

tt
t T

TT
T

−
= ,  

0

0'
R

RR
R T

TT
T

−
=  

0

'
tRT

uu = ,  
00 /

'
ρμ

tt = ,  
0

'
L
xx =  

00

0
0

tRT
L

ρ
μ

= , Note that 00 tR TT =  

The linearization results in the following equations in non-dimensional form for small 

perturbations: 

  0
'
'

'
' =

∂
∂+

∂
∂

x
u

t
ρ

        (9) 

  ( )
2

2
2

'' ' 4 '1 0
' ' ' 3 4 '

t
R

Tu uZ
t x x x

ρ π γ∂∂ ∂ ∂+ + + − + − =
∂ ∂ ∂ ∂

   (10) 
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2 2

2 2

' '' '2 2 ' 5 2 0
' 3 ' 3 ' 2 ' 3 '

t tR RT TT Tu
t t x x x

∂ ∂∂ ∂∂+ + − − =
∂ ∂ ∂ ∂ ∂

     (11) 

  [ ]
2

2

' ' 4 411 ' ' 10 '
' ' 5

R R
t R

R R

T T T T
t x Z Z

ρ
π π

∂ ∂− − − + =
∂ ∂

     

Let 
RZ

C
π5
4≡ . The last equation becomes 

  [ ]
2

2

' ' 11 ' ' 10 ' 5
' '

R R
t R

T T C T T C
t x

ρ∂ ∂− − − + =
∂ ∂

    (12) 

From equation (12) 

  [ ]
2

2

' ' 11 ' ' 10 ' 5
' '

R R
t R

T T C T T
t x

ρ∂ ∂= + − + +
∂ ∂

      

Substituting this into equation (11), we obtain 

  
2

2

' '2 ' 5 2 [11 ' ' 10 ' 5] 0
3 2 3

t t
t R

T Tu C T T
t x x

ρ∂ ∂∂+ − + − + + =
∂ ∂ ∂

   (13) 

We employ equations 9 through 12 in the stability analysis. 

 

Stability Analysis of Linearized Equations 

 

We write the linearized equations as follows: 

 
2

1 2 02

' ' ' '
' ' '

V V VL L L V A
t x x

∂ ∂ ∂+ + + =
∂ ∂ ∂

,      (14) 

where [ ]T
Rt TTuV ''''' ρ= , 

and 

 =

0000
003/20
0101
0010

1L    
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( )2

2

0 0 0 0
40 1 0 0
3 4

0 0 5 / 2 0
0 0 0 1

RZ
L

π γ− + −
=

−
−

 

0

0 0 0 0
0 0 0 0
20 22 20
3 3 3
10 0 11 1

L C=
−

− −

 

0
0

10
3

5

A
C

C

=
−

 

Consider the homogeneous equation (13) for stability: 

We assume solutions of the form   

''' txi eeVV φω= ,     (14) 

where 

βαφ i+= , 
0/

2
LL
πω = , λ

ρ
μ

783.0
00

0
0 ==

RT
L , nK

L
92.492.4 == λω . 

Substituting (15) into (14), we obtain 

[ ] 002
2

1 =⋅+−+ VLLLiI ωωφ . 

The dispersion relation therefore becomes 

0det 02
2

1 =+−+ LLLiI ωωφ , 

or 
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( ) 2

2

2

0 0
4 1 0
3 4 0

20 2 5 22 2
3 3 2 3 3
10 0 11

R

i

i Z i

C i C C

C C C

φ ω
πω φ γ ω ω

ω φ ω

φ ω

+ − −
=

+ + −

− − + +

. 

This can be simplified to 

 

( ) 2

2

2

4 1
03 4

2 5 22 2
3 2 3 3
0 11

RZ
i

i C C

C C

πφ γ ω
ω

φ ω φ ω

φ ω

+ − −

+ + −

− + +

 

   2

2

0
20 5 22 2 0

3 2 3 3
10 11

i i
Ci C C

C C C

ω ω

ω φ ω

φ ω

− + + − =

− − + +

, 

( ) ( )2 2 2 24 5 22 221
3 4 2 3 3RZ C C Cπφ φ γ ω φ ω φ ω+ − − + + + + −  

( ) ( )2 2 2 2 2 2 2 22 5 22 22
3 2 3 3

i C i C C Cφ ω φ ω ω ϕ ω φ ω− + + − + + + + −  

( )2 2 2 220 20 0
3 3

i C C Cω φ ω+ + + − = , 

or 

 ( ) ( )2 2 2 2 2 25 22 22 4 1
2 3 3 3 4 RC C C Zπφ ω φ ω φ γ ω φ ω+ + + + − + − − +  

 ( ) ( )2 2 2 22 20 20 0
3 3 3

C C C Cω φ φ ω φ ω+ + + − + + + = . 
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The final form of the equation was solved using MATLAB in order to determine the stability 

boundaries for RZ = 4, 10, 18, and 23. Note that in Bird’s text, a value of approximately 5 is used, 

although Lumpkin recommended 2318 ≤≤ RZ  for his simplified model. Also note that Jean’s 

equation [19] has been used in the foregoing, in order to obtain the source term. 

 

The stability boundaries are shown in Figures 1 through 4 below for the various values of RZ . 

Regions with negative values of α  (on the x-axis) are stable, whereas regions with 0>α are 

unstable. The main parameter is ZR and Gamma=1.4 for a diatomic gas. Note that ,βαφ i+=  so 

that α  must be negative for stability.

 

Figure 1: Stability boundaries of Lumpkin’s simplified Burnett model for RZ =4 
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Figure 2: Stability boundaries of Lumpkin’s simplified Burnett model for RZ =10 

 

Figure 3: Stability boundaries of Lumpkin’s simplified Burnett model for RZ =18 



25 | P a g e  
 

 

Figure 4: Stability boundaries of Lumpkin’s simplified Burnett model for RZ =23 

 

It is appararent that the equations are unstable to small perturbations in a quiescent fluid when 

RZ > 10 and stable otherwise. Thus, although the simplified model seems to work well in some 

cases, it will be necessary use either the Augmented or BGK-Burnett model to include the 

rotational non-equilibrium. Note that 4.92 nKω = , and that the stability boundaries have been 

determined by varying the nK  from 0 to 1 using 100 points.  We have also examined the stability 

of a one-dimensional Augmented Burnett equations for RZ =4,18, and 23 (not shown) and found 

it to be stable for RZ > 23, with the appropriate choice of coefficients. This suggests the 

superiority of the augmented Burnett equations over Lumpkin’s simplified model. 
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HOC Calculations 

In this section, we report on the calculation of Alsmeyer [15] hypersonic shock tube 

measurements and flow over a sphere. For the shock tube problem, we compare results obtained 

with the HOC methods with measurements and the DSMC results. The DSMC code used for the 

present demonstration was developed in-house. Results are presented for Argon and Nitrogen 

(N2). For the sphere, we compare HOC results with those from Navier-Stokes (NS) and DSMC. 

Note that the base NS code in the HOC procedure is LAURA [16], to which we have added the 

Burnett terms during the course of the present investigation.  

 

The initial conditions for the shock tube problem are as follows: 

,/1,1051.3,300 2
1

6
11 1

MpKT γρ =×== − where various values of 
1

M in the range 

1155.1
1

≤≤ M  are specified.  )667.1,4.1(=γ  for N2 and Ar, respectively. The initial values 

,,, 222 pT ρ and 
2

M at the other end of the shock wave were obtained with the Rankine-Hugoniot 

relations. For the perfect gas calculations, Sutherland law is used for the dynamic viscosity: 

,0

2/3

00 ST
ST

T
T

+
+=

μ
μ  where  111) 107, (1.4,= S for argon, nitrogen, and air, respectively, 

and 2730 =T K. Prandtl number, Pr, is 0.71, and thermal conductivity Pr/μpCk = , where pC is 

the specific heat at constant pressure. The thermodynamic property calculation procedures 

described in [16] are used to obtain the values of these quantities for the nonequilibrium 

calculations.  For boundary conditions, we specify the values of the variables at the inflow to the 

shock wave and zero-gradient at the other boundaries. The translational and (mean) vibrational 

temperatures are computed. The domain runs from -10 to 10, after being normalized by the mean 

free path, )02566.0,0175.0(=λ for N2 and Ar, respectively. The following table summarizes 

the conditions used for the DSMC calculations for 111 =M  (Ar) and 101 =M (N2). 
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Table I Parameters for the DSMC calculations 

Parameter Ar N2 

Number of particles at end 

of simulation 

20,000 18,440 

Number cells, N 300 300 

Upstream λ  or 1λ  1.47195 210−×  1.31746 210−×  

Number density, n 20100.1 ×  20100.1 ×  

Upstream density, 1ρ  61063.6 −×  61065.4 −×  

Upstream temperature, 1T  293K 293K 

RZ  N/A (monoatomic) 5 

μ  ( )ωμ refref TT /  ( )ωμ refref TT /  

refμ  510117.2 −×  510656.1 −×  

refT  K273  K273  

ω  .72 .72 

Molecular model VSS, 4.1=α  VHS 

Total number of time steps 800,000 800,000 

Time step for first sampling 8,000 8,000 

Frequency of sampling 4 4 

Total number of samples 5102×  5102×  

tΔ  61075.0 −×  61075.0 −×  

 

For the hypersonic flow over a sphere, we tested the cases: 

=== ∞∞∞ ρ,300,/2500 KTsmU 36 /1051.3 mkg−× , 

=== ∞∞∞ ρ,300,5000 KTU 36 /1051.3 mkg−× ,  
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=== ∞∞∞ ρ,200,2500 KTU  0.001, and === ∞∞∞ ρ,200,5000 KTU  0.001. 

 (Pr=0.71 in all cases.) Unit of density is kg/m3, while velocity is in m/s. The upstream conditions 

are used as the initial conditions for the HOC calculations. For DSMC, a zero initial value for 

every variable is used. This is essentially a steady calculation via time-stepping. A total of 1500 

time steps were required to drive the residual smaller than .101 5−×  Zero-gradient conditions are 

applied at the outflow.  Symmetry conditions are used to solve half of the domain in HOC. The 

whole domain is analyzed for the DSMC calculations, using a grid of 100100100 ×× .  

 

RESULTS, DISCUSSIONS, AND CONCLUSIONS 

The shock tube calculations are shown in Figures 5 through 11 while the hypersonic sphere 

calculations are shown in Figures 12 through 23. Note that the emphasis in the results is placed on 

the performance of the Burnett equations. That is, in relation to the experiments or the DSMC 

calculations, which are used as the "standard." It is apparent in Figure 5 that the simplified 

Burnett models show considerable improvement over the Navier-Stokes calculations for both 

perfect gas (PG) and non-equilibrium (NE) calculations. We also see in this figure that the non-

equilibrium results are more accurate (than the perfect gas results). Figure 6 shows that the results 

from our DSMC procedure compare very well with those from the experiments of Alsmeyer. The 

experimental results in Figure 7 are intermediate between the results from the simplified Burnett 

models and the DSMC solutions, showing that some differences do indeed exist between the 

DSMC results and Alsmeyer's measurements for nitrogen. However, the results from the two 

methods are close - both are able to predict the overshoot in the translational temperature, when 

compared with the simplified Burnett results. The calculation of the translational temperature by 

the Burnett model is unsatisfactory. Note that in Figure 7, the density results agree more than the 

translational temperature results do, supporting the suggestion of the inadequacy of the non-

equilibrium temperature models used. 
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 Figure 8 shows superior performance of the Burnett models relative to the Navier-

Stokes calculations, particularly at the higher Mach numbers. Comparison of Figure 7 

(N2) and Figure 9 (Ar) clearly shows superior performance (for translational energy) of 

the simplified Burnett equations for Ar relative to N2. This is probably due to the neglect 

of the rotational temperature in the present HOC calculations. Being diatomic, rotational 

energy must be included in the calculations for nitrogen (Lumpkin [13]). Fairly good 

results for the reciprocal thickness by the simplified Burnett equations can also be 

observed (Figure 11).  

 

Concerning the hypersonic flow over a sphere, we see in Figures 12 through 15 

that the Burnett equations give superior results compared to the the Navier-Stokes model 

(thicker layers) for the various cases. In Figure 16, the need for the inclusion of better 

temperature models, e.g. the addition of rotational or multi-species vibrational models, is 

indicated, although the Burnett results are significantly superior to the Navier-Stokes 

results. Figure 19 shows the profiles of the translational temperature and the mean 

vibrational temperature, confirming that the non-equilibrium temperature situation exists 

in this problem. Figure 21 shows evidence of non-equilibrium chemistry, which must be 

allowed in order to correctly calculate the hypersonic sphere problem. Note that the mass 

fractions of the nitrogen molecule are dominant relative to those of the nitrogen atom. 

However, the latter quantities are significant. Figure 20 (U =5000 m/s) shows very large 

values of density compared to the results in Figure 18 (U =2500 m/s), a direct 

consequence of the extent of compressibility (Mach number). The discrepancy between 
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the Navier-Stokes and Burnett results is shown in Figure 17. From Figure 22, we see that 

non-equilibrium effects are negligible close to the wall, when U  = 5000 m/s, whereas 

they are apparent when 1.005.0 ≤≤ x . 

 In conclusion, we have developed and tested a unified numerical methodology for 

calculating flows involving the continuum and rarefied regimes, as well as the 

transitional regime. The superiority of a simplified Burnett model over the Navier-Stokes 

model has been demonstrated with the Alsmeyer's shock tube problem and hypersonic 

flow over a sphere. The calculations were carried out in a model environment that 

includes both thermal and chemical non-equilibrium. The Burnett models constitute a 

component of our proposed hybrid scheme, which models the purely continuum regime 

and high order corrections to this regime in the non-equilibrium realm. We have also 

shown the performance of our DSMC solver, which constitutes the other component of 

the hybrid scheme. Note that the addition of rotational temperature is necessary to model 

the hypersonic flow of diatomic gases. Although the results presented in this paper 

neglected these effects, these capabilities are contained in our HOC model. 
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Figure 5: Shock wave reciprocal thickness for nitrogen 
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Figure 6: Mach 10 temperature profiles for nitrogen
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Figure 7: Density and temperature for nitrogen at Mach 10 
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Figure 8: Temperature-density separation for argon 
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Figure 9: Temperature and density profile for argon at Mach 11 
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Figure 10: Density profile for argon at Mach 11 
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Figure 11: Shock wave reciprocal thickness for argon at Mach 11 
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Figure 12: Translational temperature for hypersonic flow over a sphere 
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Figure 13: Translational temperature for hypersonic flow over a sphere 
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Figure 14: Translational temperature for hypersonic flow over a sphere 
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Figure 15: Translational temperature for hypersonic flow over a sphere 
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Figure 16: Translational temperature over the surface of the sphere 
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Figure 17: Translational temperature over the surface of the sphere 
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Figure 18: Density profile over the surface of the sphere 
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Figure 19: Translational and rotational temperatures along the symmetry axis in front of the 

sphere 
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Figure 20: Density profile over the surface of the sphere 
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Figure 21: Mass fraction of nitrogen atom and molecule along the symmetry axis in front of the 

sphere 
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Figure 22: Translational and vibrational temperature along the symmetry axis in front of the 

sphere 
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Figure 23: Mass fraction of nitrogen atom and molecule over the surface of the sphere 
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APPENDIX: COEFFICIENTS OF THE BURNETT-ORDER STRESS AND HEAT FLUX 
TERMS 

 
The coefficients of the Burnett-order (second order) stress and heat flux terms are as follows: 

 1 1 2 6
2 14 2
3 9 9

α ω ω ω= − + ,  2 2 6
1 1
3 12

α ω ω= +  

 3 2 6
1 1
3 12

α ω ω= + ,   4 2 6
2 1
3 12

α ω ω= − +  

 5 1 2 6
1 7 1
3 9 9

α ω ω ω= − + − ,  6 2 6
1 1
3 6

α ω ω= −  

 7 2 6
2 1
3 12

α ω ω= − + ,   8 2 6
1 1
3 6

α ω ω= −  

 9 1 2 6
1 7 1
3 9 9

α ω ω ω= − + −   10 1 2 6
1 2 2
3 9 9

α ω ω ω= + −  

 11 1 2 6
2 4 4
3 9 9

α ω ω ω= − − +   12 1 2 6
1 2 2
3 9 9

α ω ω ω= + −  

 13 2 6
2 1
3 6

α ω ω= − +    14 2 6
4 1
3 3

α ω ω= −  
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 15 2 6
2 1
3 6

α ω ω= − +    16 2 3
2 2
3 3

α ω ω= − +  

 17 2 3
1 1
3 3

α ω ω= −    18 2 3
1 1
3 3

α ω ω= −  

 19 2
2
3

α ω= −     20 2
1
3

α ω=  

 21 2
1
3

α ω=     22 2
2
3

α ω=  

 23 2
1
3

α ω= −     24 2
1
3

α ω= −  

 25 4 5
2 2
3 3

α ω ω= +    26 4 5
1 1
3 3

α ω ω= − −  

 27 4 5
1 1
3 3

α ω ω= − −    28 2 4
2 2
3 3

α ω ω= − +  

 29 2 4
1 1
3 3

α ω ω= −    30 2 4
1 1
3 3

α ω ω= −  

 1 1 2 6
1 5 1
2 3 6

β ω ω ω= − +   2 1 2 6
1 5 1
2 3 6

β ω ω ω= − +  

 3 2 6
1
4

β ω ω= − +    4 1 2 6
1 2 1
2 3 6

β ω ω ω= − +  

 5 1 2 6
1 2 1
2 3 6

β ω ω ω= − +   6 6
1
4

β ω=  

 7 1 2 6
1 1 1
2 3 3

β ω ω ω= + −   8 1 2 6
1 1 1
2 3 3

β ω ω ω= + −  

 9 2 6
1
4

β ω ω= − +    10 2 6
1
4

β ω ω= − +  

 11 2 3β ω ω= − +    12 2β ω= −  

 13 4 5β ω ω= +     14 2β ω=  
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 15 2 4
1 1
2 2

β ω ω= − +    16 2 4
1 1
2 2

β ω ω= − +  

 1 1 2 3 5
8 2 2
3 3 3

γ θ θ θ θ= + + +   2 1 2 3 5
2 1 1
3 3 3

γ θ θ θ θ= + − −  

 3 1 2 3 5
2 1 1
3 3 3

γ θ θ θ θ= + − −   4 2 3 5
1 12
2 2

γ θ θ θ= + +  

 5 3 5
1 1
2 2

γ θ θ= +    6 2 3 5
1 12
2 2

γ θ θ θ= + +  

 7 3 5
1 1
2 2

γ θ θ= +    8 2 4
2 2
3 3

γ θ θ= +  

 9 4
1
2

γ θ=     10 4
1
2

γ θ=  

 11 2 4
2 1
3 6

γ θ θ= +    12 2 4
2 1
3 6

γ θ θ= +  

 13 3
2
3

γ θ=     14 3
1
3

γ θ= −  

 15 3
1
3

γ θ= −     16 3
1
2

γ θ=  

 17 3
1
2

γ θ=     18 3
1
2

γ θ=  

 19 3
1
2

γ θ= . 

 

The coefficients iω  and iθ  are given in Table A1. 

 

 

 Table A1  Coefficient in the Burnett equations 
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Coefficient                     Maxwellian gas                      Hard-sphere gas 

1ω                                    10/3                                       4.056 

2ω                                      2                                          2.208 

3ω                                      3                                          2.418 

4ω                                      0                                           0.681 

5ω                                      3                                           0.219 

6ω                                      8                                           7.424 

1θ                                    75/8                                      11.644 

2θ                                  -45/8                                       -5.822 

3θ                                     -3                                         -3.090 

4θ                                      3                                           2.418 

5θ                                  117/4                                      25.157 

 




