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Abstract

The ability of high-order compact differencing and fil-
tering schemes to compute realistic aeroacoustic situa-
tions is examined. The strong conservation form of the
Euler equations are employed in a curvilinear coordi-
nate system with particular emphasis on recently de-
veloped procedures which minimize freestream preser-
vation errors. A powerful filter-based absorbing
boundary condition is also utilized. Time-integration
was achieved with either the fourth-order classical R-K
method or with a third-order, iterative, approximate-
factorization implicit scheme. The algorithm is formu-
lated for use on massively parallel platforms, with spe-
cific focus on the SGI Origin 2100 computer. Several
canonical problems have been solved to establish the
accuracy of the overall implementation. These include
propagation of a spherical pulse and scattering from a
cylinder. Finally, a preliminary analysis has been con-
ducted of acoustic scattering from a generic aerospace
vehicle configuration. These calculations, which em-
ploy a domain-decomposition approach, demonstrate
that the various components of the scheme are suit-
able for use on realistic geometries, particularly when
executed on parallel machines.
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1. Introduction

The impact of aerodynamically-generated sound on
communities and structures is an important aspect of
both civilian and military aircraft operation. Weapon
cavity acoustics, jet screech, sonic boom, cabin noise
and sound generated by blade/vortex interaction are
examples of applications. The need to meet more
stringent community noise level standards has resulted
in increased attention being paid to the relatively
new field of time-domain computational aeroacoustics
(CAA). However, acroacoustic predictions are compli-
cated by the requirement for high accuracy, low dis-
sipation and dispersion, treatment of outfiow radia-
tion conditions, complicated geometries, and demand-
ing computational load.

Recent reviews of CAA have been given by Tam
(1] and Wells and Renault [2] who discussed various
numerical schemes. These include, among others, the
dispersion-relation-preserving (DRP) scheme of Tam
and Webb [3], the method of minimization of group
velocity errors due to Holberg [4], the compact differ-
encing schemes [5], and the essentially non-oscillatory
(ENO) schemes [6].

The emphasis of the present work is on the simula-
tion of realistic aerodynamic systems which usually in-
volves complicated geometries and requires large com-
putational resources. Therefore, the method has to
be carefully selected in terms of the numerical diffi-
culties associated with poor mesh quality in a curvi-



linear coordinate formulation and the ability to min-
imize metric cancellation and freestream preservation
errors. The DRP scheme was developed with aeroa-
coustics in mind. However, the application of the
method to realistic engineering geometries has not re-
ceived enough attention, although the method was
implemented in curvilinear coordinates in (7]. The
work of Visbal and Gaitonde [8] is also relevant in the
present context. They developed and implemented
a high-order, compact-differencing and filtering algo-
rithm to simulate aeroacoustic phenomena over curved
geometries. An important aspect of their procedure
pertains to the successful demonstration in highly
curvilinear systems and the use of a high-order filter
procedure as an alternative to the asymptotic treat-
ment of outflow radiation boundary conditions in [9].

The management of the computational load asso-
ciated with aeroacoustic computations with compact
schemes is an important contribution for realistic sys-
tems. To this end, the efforts at NASA by Hixon [9)
and Mankbadi, Hixon, and Povinelli {10] are relevant.
These authors use the compact schemes in the prefac-
tored form with the aim of reducing the computational
speed. In a recent study [10], CPU time reduction was
accomplished by solving only for what the authors call
the “very large scale structures” of the flow and noise
generation. They used the k — ¢ turbulence model to
account for the effect of the unresolved scales.

In the present work, the approach taken toward the
analysis of realistic systems is based on a combination
of the fourth- and sixth-order compact scheme, high-
order filtering scheme, and the execution of the proce-
dures in massively parallel computers. Parallel issues
relevant to the compact schemes have been investi-
gated by the authors [11], wherein three procedures
(the one-sided method, the parallel diagonal dominant
method, and the parallel Thomas algorithm) were rig-
orously analyzed for their computational advantages.
From the studies, the one-sided procedure appeared to
be the best based on a compromise between simplic-
ity, extension to realistic systems, and accuracy. One
major issue with the method pertains to the accuracy
of the solution at the interface between subdomains.
However, recent work by the authors seems to suggest
that the procedure could give accurate results if the
number of overlapped cells is five or greater and an
appropriate filtering scheme is invoked.

The present work demonstrates the applicability of
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parallel aeroacoustics computation to complex aero-
dynamic systems, using the one-sided parallelization
approach. In Section 2, the governing equations are
presented, followed by the numerical schemes in Sec-
tion 3 and results in Section 4. Concluding remarks
are presented in Section 3.

2. Governing Equations

The relevant equations are the inviscid form of the
Euler equations written in strong conservation form
for generalized curvilinear coordinates (£, 7, ¢):

9(8)4 28, oG oH _ 5
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where g = {p, pu, pv, pw, pE;} is the solution vector,
J is the Jacobian of the coordinate transformation,

. - . —9 - -
F,G, H are the inviscid fluxes, and S is a vector in-
cluded to account for acoustic sources. The fluxes are

pU
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poU + &,p (2)
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(pE +p)U
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where

U=¢&u+ gyv +Ew

V= Nzl + NV + N W (5)

W=CCu+ o+ w
_ T
C(y-1)ML
Note that (z,y, z) are the Cartesian coordinate direc-
tion components, (£, 7, () the coordinates in the trans-
formed plane, (u,v,w) the vector of Cartesian veloc-
ity components, (U,V, W) the contravariant velocity
components, p the density, p the pressure, T the tem-
perature, and M, the freestream Mach number. The
perfect gas law p = pRT is assumed.

E +—;—(u2+vz+w2).
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3. Numerical Procedure

A finite-difference method is used to discretize the
equations given above. Details of the numerical pro-
cedures are provided below.

3.1 Differencing Scheme

With the compact schemes, the derivative v’ for any
generic variable u in the transformed coordinate frame
is represented as

aul_y +uf + auly = U”ZA;Z‘Q + a“7'+12;§"1,

(6)
where «, a, and b are constants which determine the
spatial properties of the algorithm. The base com-
pact differencing schemes used in this paper are the
three-point, fourth order scheme, C4, with (a,a,b) =
(3,3,0), the five-point, sixth order scheme, C6, with
(a,a,b) = (3,%,%) and the five-point, fourth order
scheme. Note that the symbol u above also represents
components of vector quantities such as the F vector

defined in equation (2).

Equation (6) is used to calculate the various deriva-
tives in the (£, 7, () plane, as well as the metrics of the
coordinate transformation. The derivatives of the in-
viscid fluxes are obtained by first forming these fluxes
at the nodes and subsequently differentiating each
component with the above formulas. In order to re-
duce the error on stretched meshes, the required met-
rics are computed with the same scheme as employed
for the fluxes.

The physical boundary conditions are applied after
each update of the interior solution vector. These con-
ditions include Dirichlet and Neumann (extrapolation
and symmetry) conditions. For the inviscid calcula~
tions, at Dirichlet nodes, the normal velocity compo-
nent is set to zero, whereas the gradient of the other
velocity components and of the pressure, density, and
energy are set to zero. Similar conditions are also en-
forced on symmetry planes.

3.2 Interior Filtering Scheme

Filters are employed to numerically stabilize the
compact differencing calculations. In the formulation,
the filtered values 7 for any quantity u in the trans-
formed space is represented as:

N
afai-—l + 'U'i + Q’fﬂi—f-l = Z 92 (ui+7z + ui«n) . (7)
n=0 2
For multi-dimensional problems, the filter is applied
sequentially in each of the three directions.  This
equation, with proper choice of coefficients, provides
a 2N*._order formula on a 2N + 1 point stencil. The
N + 1 coeflicients, ag,a;...ay, are derived in terms of
ay with Taylor- and Fourier-series analyses and are
listed in [12]. Thus Eqn. 7 can be written as

Qfpi1 + P+ appiyr = fon (Qf, i, iy n) s

where the right hand side is known once ay and the or-
der of accuracy, 2NNV, are chosen. On uniform meshes,
the resulting filters are non-dispersive. They do not
amplify any waves and they preserve constant func-
tions and completely eliminate the odd-even mode.
Since «ay is a free parameter, an explicit filter, i.e.,
one that does not require the solution of a tridiago-
nal matrix, can be easily extracted by setting ay = 0.
The primary constraint on oy is that it must satisfy
the inequality —0.5 < ay < 0.5. In this range, higher
values of oy correspond to a less dissipative filter. At
af = 0.5, Eqn. 7 reduces to an identity and there is
no filtering effect. Detailed spectral responses of these
filters may be found in Refs. 12 and 13.

Computations on a range of 2-D and 3-D problems
suggest that on meshes of reasonable quality, a value
0.3 € af < 0.5 is appropriate. Only in cases where
the mesh is of extremely poor quality, if it contains
metric discontinuities, for example, will a lower value
of ay ~ 0.1 be required. The impact of filtering on the
fully discretized 1-D advection equation with periodic
end conditions has been examined in Ref. 13.

The relatively large stencils of high-order filters re-
quire special formulations at several points near the
boundaries. For instance, the 10th order interior filter
requires an 11-point stencil and thus can not be ap-
plied at the “near-boundary” points 1, 2...5 and cor-
respondingly at IL — 4,...IL, where it protrudes the
boundary. The values at points 1 and IL are specified
explicitly through the boundary conditions and are not
filtered. At the remaining near-boundary points, two
approaches have been noted in the literature. In Ref.
11, it was suggested that lower-order centered formulas
be applied near the boundaries with appropriate ad-
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justment (or optimization) of the value of ay. This ap-
proach is based on the observation (see Ref. 14) that,
for any given order of accuracy, as values of ay ap-
proach 0.5, the dissipative effect of the filter is muted.
The second method, introduced in Ref. 20 employs
higher-order one-sided formulas. For the problems
of present interest, either approach may be employed.
Due to its simplicity, all computations reported in this
work utilize the first approach.

3.3 Metric Evaluation

Freestream preservation and metric cancellation er-
rors have to be ensured in order to extend high-order
schemes to non-trivial three-dimensional generalized
curvilinear coordinates systems. These errors arise in
finite difference discretizations of governing equations
written in strong conservation form and could easily
degrade the fidelity of high-order calculations. Grid-
induced errors may appear, for instance, in regions
of large grid variations or near singularities. Pulliam
and Steger [15] introduced a simple averaging pro-
cedure which guarantees freestream preservation on
three-dimensional curvilinear meshes. Unfortunately,
this procedure, which works very well for second-order
scheme, is difficult to extend to high-order formula-
tions. An alternative method to enforce the metric
identities consists of writing the metric relations in
conservative form:

&/ = (Yn2)c — W)y (8)
Mo/ = (Ycz)e — (Yez)¢ 9)
G/ T = (Yez)n — (Yn2)e- (10)

Similar relations apply for the other metric terms.
3.4 Time Integration

The developed procedure allows the use of the
classical fourth-order four-stage Runge-Kutta method
and the time-accurate implementation of the Beam-
Warming approximate factorization methods. With R
denoting the residual, the governing equation is:

ou oF 0G  OH
E‘R_—J<?)Z+ o " ag)‘S

The classical four-stage Runge-Kutta method inte-
grates from time ¢y (step n) to tg + At (step n + 1)
through the operations

ko = AtR(Uo) k1 = AtR(U3)
ko = AtR(Us) k3= AtR (U;;)

\ 1
Ul = Ut 4 5 (ko + 2k1 + 2kz + 2ky)

where Uy = U (z,y,2,t0) , U1 = %Q, U = U1+%L,U3 =
Uy +ky. The scheme is implemented in the low-storage
form described in Ref. 16, requiring 3 levels of storage
for each variable.

Time-accurate solutions to the Euler equations were
also obtained numerically by the implicit approxi-
mately, factorized finite-difference algorithm of Beam
and Warming employing Newton-like subiterations,
which has evolved as an efficient tool for generating

solutions to a wide variety of complex fluid flow prob-
lems, and may be represented notationally as:

()« (5e) )
() (%))
() (5g)] 20

6At 1 ~
= — <"ﬁ—> [(m) (llQp — 18Qn —+ QQn 1_ QQH'_Q)

+6¢ FP + 6,G* + 6¢ HP]

In this expression, which was employed to advance the
solution in time, @P*! is the p+1 approximation to Q
at the n+1 time level Q" and AQ = QP —QP. For
p =1, QP = Q™. This procedure is implicit and third-
order in time. The spatial difference operators appear-
ing in the explicit portion of the algorithm (right-hand
side) were evaluated by a sixth-order compact differ-
ence scheme. For convenience, the sourse term S has
been treated explicitly, which does not adversely im-
pact stability due to use of subiteration.

Temporal accuracy, which can be degraded by use
of the diagonal form, is maintained by utilizing subit-
erations within a time step. This technique has been
commonly invoked in order to reduce errors due to
factorization, linearization, and explicit application of
boundary conditions. It is useful for achieving tem-
poral accuracy on overset zonal mesh systems, and
for a domain decomposition implementation on par-
allel computing platforms. Any deterioration of the
solution caused by the use of artificial dissipation and
by lower-order spatial resolution of implicit operator
is also reduced by the procedure. Three subiterations
per time step have been applied for the computations
presented here.



3.5 Parallelization Strategy

The parallelization procedure used for the aeroa-
coustic computations is based on domain decomposi-
tion which has been implemented within the frame-
work of compact schemes. The strategy, which we re-
fer to as one-sided [11], involves the advancement of
the solution independently in each subdomain, with
individual interior and boundary formulas used in the
same manner as in single-domain computations. Data,
is exchanged between adjacent subdomains at the end
of each sub-iteration of the implicit scheme (or each
stage of RK4), as well as after each application of the
filter. Gaitonde & Visbal'” applied the interface al-
gorithm to 2D inviscid and viscous flow calculations
using the compact scheme in a sequential execution
mode. It was found that the lower-order one-sided
boundary scheme could cause a serious distortion of
the flow structure but that this distortion could be
reduced by superior higher-order one-sided filter for-
mulas and a deeper overlap size.

4. Results

4.1 Parallel Performance

The parallelization of the compact schemes is not a
trivial matter, due to the implicit nature of the equa-
tions. Although we have chosen the one-sided method
to parallelize our code, the choice is based on its sim-
plicity, which means that the method could be ap-
plied to realistic geometries. As we show later, the
procedure also tends to have a superior parallel per-
formance. The parallel tridiagonal solvers, whose al-
gorithmic details have been reported by the authors
[11], are an alternative to the one-sided method. Un-
like the latter, they recover the single-domain results,
provided a conforming mesh system is used. Examples
of parallel diagonal solvers include the transposed!®,
the pipelined'® (or Parallel Thomas Algorithm, PTA)
and Sun’s?? distributed (Parallel Diagonal Dominant,
PDD) methods. The comparative performance of
these methods are shown in Table 1 (a) (CPU times)
and in Table 1 (b) (speedup). The results were gener-
ated for a kernel problem for the inversion of a tridiago-
nal system of equations with N = 400 (i.e., total num-
ber of nodal points in the z— or derivative—direction),
N; = 400 (i-e., number of nodal points in the verti-
cal or vector direction). Nj in the Table 1 (a) is the
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overlap depth in terms of grid points. The numbers
in parenthesis in Table 1 (b) are the values actually
observed (measured) in our numerical experiments on
the IBM SP2 machine at Cornell University. Note that
the domain is decomposed only in the z—direction for
the results in these tables.

The performance data for the IBM SP2 system are:
start-up latency, = 55us, point-to-point commu-
nication, 1/8=17.5 MWords/s, and time to perform
one floating point operation, v = 1/65 us. Note that
B = 1/17.5 us, is the time required to send double-
precision data. Thus, o/ &~ 966, which is a large num-
ber (compared to unity), indicating that it is costly to
initiate the process of sending a message (big or small)
in this system and that messages should be bundled.
The system is rated at 266 Mflops/s at peak perfor-
mance, although the measured values are 65 Mflops/s
(block tridiagonal matrix calculation) and 85 Mflops/s
(multi-grid calculation). In Table 1, P denotes the
number of processors, k is the number of groups in the
pipelined algorithm; j is the reduced number in Sun’s
algorithm, which is usually not larger than 10 for the
compact difference scheme. Note that the optimal pa-
rameter k£ can be expressed as

N
k= | (11)
Ny *P/Nxv
p(P~1)
where v = %,p = 9—;, and g; and gy are the for-

ward and backward calculation times for the TDMA
per grid point. To produce Tables 1 (a) and 1 (b),
we choose Sun’s reduced PDD approach [20] to repre-
sent the distributed algorithms, which appears to be
the most efficient parallel solver in this category, and
the unoptimized Povitsky!® method to represent the
pipelined algorithms. The transposed algorithm (not
shown) was originally developed by Cai, Ladeinde, and
O’Brien'® for FFT, but has also been applied to the
tridiagonal system at hand. The TDMA algorithm in
the table is the standard Tridiagonal Thomas Algo-
rithm. From Table 1 (a), one can see that Sun’s algo-
rithm incurs a smaller communication cost compared
to PTA, and therefore should be preferred on machines
capable of handling computations much faster than
they do communication.

Although Table 1 shows the one-sided method to
be the slowest of the three parallelization strategies, it
is still the case that the procedure is relatively very
easy to implement. Therefore, its parallel performance



was further investigated with a three-dimensional do-
main splitting in which each processor computed the
grid 60 x 30 x 30 in (z,y,z). This is the useful grid
in that it excludes two of the five grid points shared
with the neighboring processor in the overlap region
on each side of a subdomain. The physical system cal-
culated here is a laminar boundary layer flow. Sequen-
tial calculations corresponding to each parallel case are
needed in order to calculate speedup. The base se-
quential mesh is 60 x 30 x 30 or 54 x 103 grid points.
The results, which are shown in Figures 1 (a) and
1 (b) are quite interesting, as discussed below. The
grid layout in the (z,y,z) directions of the sequen-
tial mesh is chosen to mimic the processor decompo-
sition. Thus, for the domain decomposition 2x4 x 1,
for example, the grid layout for the sequential calcu-
lation is (120, 120, 30), or (60x2,30x4,30x1), which is
432 x 10% nodal points. Table 2 shows that processor
decomposition (e.g., (2,1,1)) versus (1,2,1) does not
significantly affect the CPU time performance. Also,
for the sequential calculations, the total number of grid
points, not the grid layout in (z,y, z), govern the per-
formance. Scalability results are presented in Figure 1
(a), wherein the speedup is plotted against the number
of processors; each processor calculates 60 x 30 x 30.

In Figure 1 (b), the CPU time performance is pre-
sented as a function of the number of grid points for the
sequential calculations. The (ideal) solid line in this
figure is based on a linear scaling of the CPU time,
using the grid 60 x 30 x 30 (or 54 x 10% grid points)
as the base for the extrapolation. It is evident that
the observed CPU performance (dashed line) does not
scale linearly with the number of grid points. In gen-
eral, if the CPU time for the sequential calculation of
the base grid is Tp, that for the sequential calculation
of 54 x n x 10% grid points, say T,, is greater than
nTp, as shown by the larger values of the dashed line
data over the corresponding solid line results (Figure 1
(b)). The speedup is T(%?TQ That is, the speedup can
go above n (Figure 1 (a)), depending on the values
of (Tsn, — nTp) relative to T,. Note that for all cases,
Ty is the same because, even though the size of the
sequential problem (and hence Ts,) changes, that in
each processor (and hence Tp) is fixed.

4.2 Evaluation of 3D Aeroacoustic
Computation

The basic computational schemes implemented in
this paper have been rigorously validated for single-
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domain, but mostly two-dimensional aeroacoustic cal-
culations in previous studies by the authors [7,
21]. This section discusses the validation for three-
dimensional aeroacoustic computation.

4.2.1 Spherical Acoustic Pulse on a
3-D Curvilinear Mesh

This validation case considers the propagation of
a spherical pulse in a three-dimensional curvilinear
mesh. An initial pressure pulse is prescribed by

(=2 +y2+22)
—In2—=

p:pm+€e )

where € = 0.01. In order to examine metric can-
cellation errors, a three-dimensional curvilinear mesh

shown in Figure 4 is generated using the following
equations
Zijk = Zmin +

1

|
|

r . -
Azg | (i — 1) + A sin ey (5 — 1) Ayo sin Nza(k — 1)Azg
L Ly L,
Yi,5,k = Ymin T
Bgo | (G~ 1) + Ay sin T DB g el — DAz
L e L,
2,5,k = Zmin +
r . .
Azg |(k—1) + A.sin ”‘”’T(ZL DAz . naym(j — 1)Ayg
L z L,
where
i=1,..,IL; j=1,.,JL, k=1,. KL
L L L
Azg = ——; Ayg = —L—; = £ .
o IL—],’ Yo JL_l, Z0 %L1

The grid (IL,JL,KL) = (61,61,61), (Ls,L,,L.) =
(60,60, 60), and ngy = ny. = ... = 8. These parameters
yield a mesh in which the metric identities are not
trivially satisfied.

The pulse propagation problem is computed with
RK4 (At = 0.004) using the fourth-order compact dif-
ferencing, tenth-order filtering scheme with oy = 0.49.
The perturbation pressure along the grid line i = 7 =
31 (Figure 3) is compared for the present procedure
and the exact solution. The numerical results for both
the standard metrics and the conserving form pre-
sented above are shown. It is evident that, whereas
the standard metrics yield the wrong resuits, the new
metrics give results that are in perfect agreement with
the theory. Note that the use of a sixth-order compact

|



scheme (not shown) displayed reduced sensitivity to
the choice of metric evaluation procedure, consistent
with [22], where metric cancellation errors were shown
to decrease with order of accuracy. Nonetheless, all
solutions on this highly distorted mesh were found to
be of poor quality if the non-conserving metric evalu-
ation procedures are used. In this case, the freestream
preservation errors could pollute the acoustic pressure
solutions. The present results clearly demonstrate that
high-order compact schemes can be successfully ex-
tended to general curvilinear grids, making them suit-
able for complex aerodynamic configurations.

4.2.2 Three-Dimensional Scattering of
Acoustic Pulse from a Cylinder

Another validation of the parallel three-dimensional
approach developed in this paper is the scattering of
acoustic pulse from a cylinder, the two-dimensional
version of which is denoted as Category I, Problem 2
in the second CAA Workshop of [23]. The original
problem is extended to three dimensions in this pa-
per, by introducing the z coordinate direction. The
additional boundary condition of periodic solutions is
imposed in the z—direction. The pulse is given by

—In2 I—Ic>2:(!/~11c)2

P = Poo T €€ )

with z, = 4, y. = 4, € = 0.01, b = 0.2. Along the
cylinder surface, the normal velocity is set to zero,
whereas the normal gradients of the tangential and
axial velocity components, pressure, and density are
set to zero. Since the configuration is symmetric,
only the upper half of the configuration is considered,
and symmetry conditions are applied along the sur-
face (r,0 = 0,180, z). Note that a generalized curvi-
linear coordinate formulation (not a polar coordinate
system) is used and the coordinate directions were in-
terchanged in order to test any bias.

A coarse version of the computational mesh is shown
in Figure 4, whereas, in Figure 5, the pressure re-
sults are compared for the sequential two-dimensional
and the present parallel three-dimensional calcula-
tions. The agreement between the two sets of results is
evident. Figure 6 shows the uniformity of the solution
along the z-direction, as one would expect. From the
foregoing, one can conclude that the treatment of the
interface between subdomains does not degrade the
solutions relative to the single domain results.
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4.3 Acoustic Scattering by a Complex
Configuration

In order to demonstrate the capability of the present
method to treat complicated aeroacoustic phenomenon
over realistic configurations, we consider the scattering
of a spherical pulse by a generic aerospace vehicle (the
X240C) for which a body-fitted grid system was read-
ily available. The final problem used to illustrate the
application of our procedure is the acoustic scattering
by the X24C reentry vehicle. The pulse is specified as

n2 L’:r—mc\,z-%-(!/‘v/r)2-*-(2—202

P=DPootee! v ;
where
Poo =y €= 0.01,b* = 0.1.
and
z, = (0.2978, Y. = 0.2995, z. = 0.

A sixth-order compact scheme is used in the interior
with fourth-order on the boundary. The interior filter
is tenth-order, whereas the four nodes in the vicinity
of the boundary (including interface boundaries) use
filter schemes of orders 2,4, 6, and 8, respectively. The
calculations were done with the third-order, implicit
Beam-Warming procedure using At = 1073. Note that
the use of RK4 for this problem required a At that is
two orders of magnitudes smaller than this value. The
calculations were done for two grids: 120 x 80 x 121
and 60 x 40 x 61. The domain is decomposed as 2 x 2 x 2
and mapped into eight processors on SGI 2100. The
transformed curvilinear coordinates £(i), n(7), ¢(k) are
aligned with the streamline, body normal, and trans-
verse directions, respectively. Figure 7 shows the sur-
face grid (J=0) while Figure 8 is the outer boundary
(J=61). Projected views of four stations (I=15, 30,
45, and 60) are shown in Figure 9. The actual views
of the surfaces is shown in Figure 10. The computed
pressure on these surfaces are shown in Figure 11. In
Figure 12, the projections of four surfaces along the
¢ direction are shown. The pressure distribution on
these surfaces is shown in Figure 13.

The acoustic simulation exercise for the X24C reen-
try vehicle, as shown above, is preliminary and has not
been examined in detail from a numerical perspective.
However, the calculations do not show any unusual
behavior for this complicated problem. Therefore, the
high-order procedure holds promise for aerocacoustic
analysis of complex configurations.



5. Conclusion

In this paper, we have demonstrated the usefulness,
through the calculation of realistic aeroacoustic sys-
tems, of the high-order compact differencing and fil-
tering schemes developed and implemented in {8]. The
nonlinear Euler equations were analyzed in the strong
conservation form and in a generalized curvilinear co-
ordinate system. The procedures were carefully imple-
mented to minimize freestream preservation errors and
to provide a robust, yet accurate, treatment of outflow
radiation conditions. For time integration, both the
standard fourth-order Runge-Kutta scheme and third-
order Beam-Warming scheme were investigated. The
analysis of realistic systems with the developed proce-
dures was made possible by the execution of the result-
ing code on parallel machines. The computations re-
ported in this paper were done on the multi-processor
SGI Origin 2100 computer, with the MPI message
passing protocol. The analysis of a spherical pulse
on a 3D curvilinear mesh and the 3D scattering of an
acoustic pulse from a cylinder was used to validate the
accuracy of the parallel computations. Nonetheless,
for this complicated geometry, no unusual behavior in
the results were observed, especially at the interface
between subdomains. A preliminary acoustic simula-
tion for the X24C vehicle is also reported in this paper.
When executed on parallel machines, the developed
procedures are shown to be effective in the simulation
of aeroacoustics on complex geometries.
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Table 1 (a): Theoretical CPU times required by various schemes to invert
a tridiagonal system of matrix equations. “;” is the reduced number in Sun’s

PDD algorithm and “k” is the number of groups in Povitsky’s PTA procedure.

Algorithm Computation Communication Idle

TDMAT® Ni(5N —3)y 0 0

One-Sided™® | Ny [5(X + No) — 3]y | (2 + N1 Noj) 0

PTA416 Ty =N (5% —-3)y | Th=2ka+2N:8 | (P-1)(Ti/k)
PDD™® [N (58 +3j+1)y [ 2a+2Ni8 0

Table 1 (b): Theoretical versus observed CPU times on IBM SP2 taken
by various schemes to invert a tridiagonal system of matrix equations. Only
the computation task is included in this table (i.e., no communication or idle
time) and the numbers have been normalized by the CPU time for the Thomas
algorithm. The numbers in parenthesis are the observed (measured) values on

the IBM SP2.
Algorithm | P =2 P=4 P=38 P=16
TDMA 1 1 1 1
One-Sided | 1.954 (1.957) | 3.826 (3.802) | 7.342 (7.30) | 13.585 (13.41)
PTA 1.53 (1.445) | 2.29 (1.927) | 3.07 (2.179) | 3.69 (2.169)
PDD 1.89 (1.762) | 3.59 (3.025) | 6.52 (5.098) | 11.01 (6.78)

Table 2: Performance data for sequential and one-sided parallel scheme cal-
culation of laminar boundary layer. For parallel processing, the size of the grid
in each processor is 60 x 30 x 30. For the sequential calculations, the grid points in
(z,y, z) corresponding to each of the 8 parallel cases are (60, 30, 30), (120, 30, 30),
(60, 60, 30), (240, 30, 30), (120,60,30), (120,120,30), (120,60,60), and (120,120,60).
The abbreviations “Proc”, “dim” and “seq” in the table denote “processor”,
“dimension”, and “sequential”, respectively

# Proc. 1 2 2 1 4 8 8 16
Proc. dim. | (L,L,1) | 3L, 1) | (L,2,1) | (41,1) | (22.1) | (24,1) | (2.2,2) | (2.4,2)
Parallel CPU | 41.92 | 43.82 | 44.85 | 4553 | 4843 | 50.20 | 53.03 | 54.37
Sequential Grid | 54000 | 108000 | 108000 | 216000 | 216000 | 432000 | 432000 | 884000
Sequential CPU | 42.70 | 93.82 | 93.33 | 102.64 | 198.04 | 410.07 | 419.92 | 862.86
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Figure 1. Performance of parallel computations using the one-sided strategy.

11



(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

Figure 2: 3D curvilinear mesh model for spherical acoustic pulse.

1.0E-03}
5.0E-04
0.0E+00g
5.0E-04}

-1.0E-03}

Figure 3: Effect of metric evaluation on computed pressure along line through
spherical pulse at t=10.
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4. Coarse version of the 3D mesh used for parallel computing scattering of acoustic pulse from a
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Figure 6. 3D contour maps of pressure distribution for acoustic scattering from a cylinder.
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Inner Surface

Figure 7. Coarse grid model of X24C Reentry Vehicle showing the surface mesh (J=0).

Outer Surface

Figure 8. Coarse grid model of X24C Reentry Vehicle showing the outer surface mesh (J=40).
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Figure 9. Cuts along the x-direction of the model X24C Reentry Vehicle. Projected views are shown here.
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Figure 10. Cuts along the x-direction of the model X24 Reentry Vehicle. The actual surfaces are shown.
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Figure 11. Acoustic pressure distribution in various surfaces along the X (axial) direction of the model
X24C Reentry Vehicle.
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Figure 13. Acoustic pressure distribution in various surface along the Z (circumferential) direction of the
model X24C Reentry Vehicle.
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