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1 Introduction 

Turbulence in Compressible 
Mixing Layers 
The direct numerical simulation (DNS) of two-dimensional compressible turbulent 
mixing layers is reported in this paper for convective Mach numbers Me = 0.5, 0.8 
and 1.0. All scales offlow are resolved with a 2562 grid, although results are also 
obtained for 642

, 962 and 1282 grids for the purpose of determining the effective 
accuracy and grid-independence of our calculations. The effect of Mach number is 
also reported for all the Reynolds stress tensor components and for the "shear" 
components of the anisotropy tensor, the dissipation tensor, pressure-strain, and the 
triple correlation tensor. The short-time behaviors of some of these quantities are 
similar to those reported by Sarkar ( 1995) for homogeneous shear flow, in spite of 
the differences in the problem type and initial and boundary conditions. The relative 

Fig. 1 magnitudes and signs of the unclosed terms in the Reynolds stress equations provide ourw,
information on those that have to be retained for turbulence modeling as well as the Ghost 
sense of their contribution. total il 

Turbulence mixing layers represent a prototype of the mixing 
that takes place during combustion in some propulsion systems. 
Because this phenomenon occurs at high speed, the effect of 
compressibility has been studied (Sandham and Reynolds, 
1991). The reference just cited also contains much of the rele­
vant fluid dynamical work on compressible mixing layers, to 
which the reader should refer. 

The goal in our work is to acquire a detailed understanding 
of compressible mixing layers with an emphasis on results that 
may eventually lead to affordable Reynolds stress models for 
engineering calculations (see Ladeinde, 1995). Therefore, a 
significant portion of this paper is devoted to investigation of 
the intensity of second moment terms in the evolution equations 
for the Reynolds stress tensor, with a particular emphasis on the 
unclosed terms in the equations. Previous work on compressible 
mixing layers does not address this issue. 

The results reported in this paper are based on the direct 
numerical simulation of compressible turbulence. The numeri­
cal procedures and the validation of our computer program will 
be presented, together with the results on the magnitudes of 
some of the second moments and the effect of Mach number. 

2 Mathematical Formulation 
The pertinent equations are those that govern the conservation 

of mass, momentum and thermodynamic energy under com­
pressible conditions. Further, each nondimensional variable is 
decomposed as follows, taking velocity U i as an example: 

Here, an overline represents a Reynolds-averaged quantity 
whereas a superscripted prime denotes fluctuations. The govern­
ing equations are solved in the nondimensional form, with the 
free-stream velocity ik = ul y_ taken as the velocity scale and 
the vorticity thickness Ow as length scale, which is defined as 

6=-~~ 
w !d(PUIP)! ' 

dy y~O 

where b..U" is the velocity difference across the layer, i.e., b..Ux 
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( 198: 
= ul y __ - ul y __". The mean velocity profile in all cases is direc 
given by: tion i 

NSC 
u = tanh (2y). Ea 

tenseThe initial mean temperature profile is calculated using the the i Crocco-Busemann relation, and assuming unity Prandtl number: 
to in' 
tions 
equa 

[)
where 'Y is the ratio of specific heats and Me is the free-stream - (~

[)t ' ­Mach number (or convective Mach number), defined as 

= b..U.::M(" 

coo 

The quantity Cx is the free-stream sound speed. Uniform pres­
sure is assumed for the initial mean flow (Po = 1) and the mean 
density profile is obtained from: 

_ Polo 
Po = --,. wh. 

'YM~ 

Superimposed on the mean velocity profile are disturbances 
of the form 

I A yL . (27f'X) (1)-[y21l0)
U = -sm - e • 

m lO7f' Lx ' 

, -A 
In 

(27f'X) e (2)-(y'llO)v - cos ,
Lx 

where the amplitude Am is chosen to be 0.05, following Sandham 

and Yee ( 1989) and Lx is the length of the domain in x-direction. 

The computational domain is (x, y) E (0, 20) X (-50, 50), 

The velocity perturbation in the y-direction is made to resemble 

the eigenfunction from the linear theory, while that for the 1=

streamwise component is chosen so that the entire disturbance 
 t 
is divergence-free. 

Four different meshes, 642
, 96 2 ,128 2 and 256 2 , are chosen 

for our calculations. For each mesh, a constant grid size distribu­
tion is employed in the streamwise direction, i.e., constant b..x, 
while, in the cross stream, the grid points are unequally spaced, 
with mesh concentration near the center of the layer (y = 0), 
to cover the region dominated by large scale structures. The 
mesh generation routine is described in detail by Drummond 
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Fig. 1 Characteristics of the SV/PS (M. 0.5) Simulation. Results from 
our work (lines) are compared with the pseudospectral calculations by 
Ghosh and MaHhaeus (1992) (dots). EkJn is total kinetic energy. E"" is 
total internal energy and T. is eddy tum over time. 

(1988). A periodic boundary condition is imposed in the x­
direction. For the y-boundaries, a zero velocity gradient condi­
tion is imposed as a simpler but an acceptable alternative to the 
NSCBC conditions (Poinsot and Lele, 1992). 

Each term of the evolution equations for the Reynolds stress 
tensor pll!U;' has been computed for the purpose of examining 
the intensity of turbulence in mixing layers. The goal here is 
to investigate the magnitudes of the unclosed terms in the equa­
tions and guide the modeling of these terms. The exact transport 
equation for the Reynold stress tensor is (Sarkar et aI., 1991) 

a ar-....- r-....­
- (pu'!u~') + -- (pu'fu'fil)at ~ ax. 'J' 

CD ~ 
m 

+ f-u?p'j - u'/p,;), + ,(U?crjk.k + uj'crik,k)" 

IRemaini~ Terml I IRemaini~ Tenn2 I 

where 

2-, ­
7'Cij = P +p - '3 P eO/j , 

r-....- ---	 --- --- ­

(3) 

Tijk = pU;'U'JU~ + (P'UiOjk + p'uJO;d - (uiajk + u}aik), 

I 
, 

a ij is the viscous stress: 

au = /1(Ui.j + Uj.; ~ Uk.kOij)' 

In Eq. (3), P ij is the production, 'tTij the deviatoric part of the 
pressure-strain correlation, Tijk the diffusive transport, fiij the 
turbulent dissipation rate tensor and p'e the pressure-dilatation 
correlation. The symbol tilde, "-", on a variable indicates Fa­
vre-averaging defined, for any variable ¢, as 

All terms are calculated at position y "" 0 at different 
times. In a modeling framework, the terms ill to 12],\ 
Journal of Fluids Engineering 

[Remaining Term Ii and [Remaining Term2i in (3) are un­

closed and therefore need to be modeled. 

3 Numerical Method 
A high-order finite difference-based ENO (Essentially Non­

Oscillatory) scheme is used for the direct numerical simulation 
(DNS) of compressible turbulence, details of which are avail­
able in Ladeinde et a1. (1996). The procedure can be expressed 
in the operational form: 

(4) 

where E(') is an operator representing the advancement of the 
solution in time from level n to n + 1, T == tn+1 - tn and R(') 
is the reconstruction of the numerical flux, j, which is of the 
form: 

md 

'£+ll2(U(Xj, tn); T) 	 2. c(i - j, k)'J[i, k], (5) 
k=O 

where md is the order of the procedure, c is a high-order interpo­
lation coefficient, i is the left most point in the stencil used to 
approximate .£+(112)' andf [i, k] is the undivided difference of 
the flux term. 

A third-order explicit Runge-Kutta TVD scheme is used for 
the time advancement of the operator E(') in Eq. (4). The 
primary dependent variables (p, u, v, E) were obtained directly 
from the ENO simulation. The pressures and temperatures were 
calculated as follows 

2 2 p (y l)[E }: p(u 2 + v + w )], 

T 

4 Results 
The computer program used for the present simulations has 

been validated for the kinds of calculations reported here. One 
of the validation exercises is reported in Ladeinde et al. ( 1995) 
and pertains to the DNS of the two-dimensional compressible 
turbulence problem investigated by Ghosh and Matthaeus 
(1992), who used the pseudospectral method. Four types of 
initial conditions were investigated. Figures 1 and 2 show the 
comparisons for the SV IPS initial condition case at Ms 0.5 
(see Ladeinde et aI., 1995 for notations and details). In Fig. 1, 
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Fig. 2 Characteristics of the SVIPS (M. 0.5) Simulation. Results from 
our work (lines) are compared with the pseudospectral calculations by 
Ghosh and Matthaeus (1992) at T. lilt 20.5. The circular and triangular 
symbols denote the results for of Ghosh and Matthaeus for P" n and 
Pin" respectively. PIdn is kinetic energy spectrum, Pin! is internal energy 
spectrum and T. is eddy turn over time. and k is wavenumber. 
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Flg.3 Comparison of 8;;"'1",;;'" with the resuHs in Lee et al. (1991) for 
eddy shocklets in three-dimensional decaying compressible turbulence. 
8 and", are fluctuating dilatation and vorticity. respectively. Mach num­
bers. Ma, of 0.65 and 1.65 were compared, with comparable agreement. 
Figure shows the comparison for Ma = 0.65. T. is eddy tum over time. 

the time evolution of Ein, (average internal energy) and Ekin 

(average kinetic energy) are shown. Figure 2 shows the spectra 
of the internal energy and the kinetic energy, as functions of 
the wavenumber. The excellent agreement between the two sets 
of calculations is apparent. 

Another test to which our program was subjected consists of 
the reproduction of the results presented byLee et al. (1991) 
for the eddy shocklets in decaying compressible turbulence. !he 
conditions in Lee et al. were used except for the numencal 
procedure which, in Lee et at, is based on the co~pact Pade 
approximant scheme. Figures 3 shows the companson of the 
ratio Brmsl Wrms (where B is fluctuating dilatation and W is fluctu­
ating vorticity) with the results reported by Lee et al. Good 
agreement is apparent. Comparisons were also made for the 
skewness and flatness (not shown), also with good agreement. 

The simulation of the two-dimensional compressible turbu­
lent mixing layers, on which our study of the turbulence moment 
equations is based, uses the same conditions as in Sandham and 
Yee ( 1989). Figure 4 shows the evolution of vorticity thickness 
bw at Me = 0.8, Re = 400 for different meshes. The same 
quantity calculated by Sandham and Yee with the TVD method 
and the McConnack method is also shown in Fig. 4 for compari­
son purposes. The vorticity, density, and pressure fields are 

Evolution of 0", for Different Meshes 
at Mc=O.8, Re=400 

8~~~~~~~~-,~~~~~ 

7 --_.-..-.-.. 64' (END) 


------- 96'(ENO) 

- .....- •.-.-. 128' (END)6 
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--- 256' (END) 
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Fig. 4 EVOlution of the vorticity thickness 8~ at M. = 0.8, Re 400 
for different meshes: present work (lines), Sandham and Yee (1989) 
(symbols) 
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x x 	 whi 
is IiFig.5 Contour maps from the present work: (a) vorticity field, (b) den­

sity field, and (c) pressure field 1 
the 

shown in Fig. 5, which shows identical distribution to those 
reported by Sandham and Yee (1989) (not shown). The vortex 
rollup can be observed, as can the precision with which the 
local shock is captured. Some comments are in order for the 
oscillations in the density field of Fig. 5 (b) as there exists at 
least two reasons to suggest why the oscillations might be physi­
cal. First, our numerical procedure is constructed to avoid such 
oscillations that are numerical in nature (Shu et aI., 1989). For 
another, we have not observed the same oscillation with the 
pressure distribution (Fig. 5(c», which on the basis of the 
similarity of the two fields, evidently requires the same compu­
tational challenge as the density field calculation. 

It is important that numerical procedures be able to exhibit 
grid independence, if the results they provide are to be of any 
use. Grid independence of our code was investigated for the 
case Me 0.8, Re = 400 (see Fig. 4). The asymptotic behavior 
of our calculation can be observed: the curves become closer 
together as the grid is refined, such that the results are almost 
identical for 1282 and 256 2 

• This kind of result generates confi­
dence in the calculations. The results with MacConnack (75 2 

mesh) and TVD (150 2 mesh) methods, which were carried out 
by Sandham and Yee (1989), are also presented in the same 
figure. 

Our computer program has also been put through an accuracy 
study to determine the actual spatial accuracy of the schemes. 
The same grids shown in Fig. 4 are used for this study, whereby 
errors are measured assuming the results for 256 2 are "exact." 
The procedure for obtaining accuracy consists of the assumption 
that the error, Ei , for a grid denoted by Hi, " can be written as 
Ei = a' /::;.f, where the further assumption is made that the 
constants a and fl are the same for all grids. This error is defined 
as 

where 

- 1 it .bi == - b'u, • dt, 
t 0 

Fi
which is a time-average of the vorticity thickness bw • The con- (I! 
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Evolution of 0", for Different Mach Numbers 
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F'tg. 6 Evolution of vorticity thickness Bw for different Mach numbers 

stants a and {3 are detennined using 64 2 
, 96 2 

, and 128 2 grid, 
via the least· square method. The result is 

E; "'" 176.42·.1. 7'24 , 

which shows that the order of accuracy of our 2D END code 
is approximately third (.1.l). 

The validated computer program has been used to generate 
the mixing layer results shown in Figs. 6 through 10. Figure 6 

(a) -B'2 for Different Mach Numbers (Short Time) 
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(b) -B12 for Different Mach Numbers (Long Time) 
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(a) A for Different Mach Numbers (Short Time) 
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Fig. 8 Evolution of A (lISK)(dKldt) for different Mach numbers: 
(a) short time, (b) long time 

shows the vorticity thickness (Dw) for three Mach numbers 0.5, 
0.8 and 1.0 using the initial conditions described earlier in this 
paper. The Reynolds number is 400 for all cases. The well­
known result of thinner layer thickness with increasing Mach 
number is reproduced in our calculation. In general, we observe 
an initial period of slow, linear growth and a much faster nonlin· 

(e) 0 12 for Differant Mach Numbers (Shon Time) 
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::::(J·8 

..().4 Mc=1.0 

o~--7---~'~O-IA-~-~T.'5~~~ 

<', 
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Fig. 9 Evolution of the "shear" components: (a) diSSipation, D'2, (bl 
Fig. 7 Evolution of -8'2 for different Mach numbers: la) short time, production, p,•• (c) pressure·strain, 11'2, (d) transport, T,,,,,... Results are 
(b ) long time shown for short time. 
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Comparison of Three Components of R.. 
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Fig. ~Comparison of the components of Reynolds stress tensor 
Rq = ul'uj'12K for Me = 0.8, Re = 400: (a) 20 results, (b) 30 results 

ear growth at a later time, which are also consistent with those 
reported by Sandham and Reynolds (1991). For the case Me = 
0.5, no shocks were found in the flow field. However, for Me 
= 0.8, local shock waves were generated during the develop­
ment of vortex rollup. This phenomenon was also observed for 
the Mach numbers beyond 0.8. 

A study of the evolution of the anisotropic tensor Bij = 
i2[U;12K - (113 )8ij (here K = (1/2)~n shows that, at short 
time 0 < t' < 20 (t' = t'!:::"UooI8o), there is a systematic 
decrease in the quantity - B12 with increasing Mach number 
(Fig. 7 (a». This might have already been implied by Sarkar 
( 1995), who reported similar behavior for homogeneous shear 
flow. During the same time period, other quantities develop in 
a consistent pattern. The value of A = (1/SK) (dKldt), which 
describes the instantaneous temporal growth rate of K, tends to 
be higher for lower Mach numbers (Fig. 8ea» (S is the shear 
rate, here defined as S = (8aIoy )y~o). Note that these results 
are consistent with those reported for homogeneous shear flow 
by Sarkar (1995), despite the differences in the initial condi­
tions and problem setup. However, we observed that, at long 
time in the case of mixing layers, the behaviors do not show 
any consistent pattern. Each quantity shows a wavy evolution 
pattern, with larger amplitudes for increasing Mach number. 
The "shear" component B\2 seems to approach a zero mean 
value at long time, although the oscillation is stronger for the 
higher Mach number cases (Fig. 7(b». Similar observations 
were made for A (Fig. 8(b». 

Other terms in the Reynolds stress transport equatio!!...D) are 
also studied. The magnitude of pressure-dilatation (p' ()), as 
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1.S 
(b) 3D Result 
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•._._._._._._._...._._.­ R22 

1.0r"..-­

---------. R32 

\." ._._._._._._._.,.,.,.,./ 
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well as terms [II, !Remaining Term11 and !Remaining Term~ in T 
peri(3) are all insignificant for all Mach number cases. Discussed 
axis:here are the "shear" components of four tensors including 
(U~dissipation (Dij), production (Pij), pressure-strain (11"u), and 
tiOlttransport (Tijk.k)' For convenience, these quantities are rescaled 
theby SK with Sand K defined as above. At short time, all four 
to ttquantities (D\2, P\2, 11"12 and T 12k,k) show a similar variation 
ity iwith Mach number. That is, their magnitudes increase with 

Tincreasing Mach number (Fig. 9(a), (b), (c) and (d». The 
comparison of the three components of the Reynolds stress ate. 

corrtensor Rij = ilfU;12K for Me = 0.8, Re = 400 shows that the 
Rll component dominates at early time, after which it decreases cell 
in magnitude and begins to oscillate. The other components, cell 
R\2 and R22 , are significant in magnitude at later time, although At: 
with a large oscillation. R12 is negative for most of the time osci 
while other components are positive (Fig. lO(a». ing 

witl 
peri 

5 Discussion reg. 
putIt can be observed from our procedure that extra efforts were 

Fmade to produce high quality calculations and to characterize 
engthe effective accuracy of our numerical procedures, which was 

found to be approximately O(!:::..3). Based on the grid conver­ pap 
gence study, as well as some elementary scaling analysis (not effc 
shown), it would seem that the 128 2 grid is sufficient to resolve dila 
the necessary DNS scales, although most of the results have me; 
been generated with 256 2 grid. Evidently, higher parameter val­ Spe 
ues may dictate different grid requirements. are 

The first interesting observation from the present study is the de" 
similar profile at early time for the kinetic energy growth rate A neg 
and the anisotropy tensor Bij with quantities reported by Sarkar rep 
(1995) for the homogeneous shear flow. Initial and boundary terr 
conditions are different for these two problems so that, on the in 
surface, there are few reasons to expect similar results. It would var 
seem that the nature of shear and the definitions of these two Ob­
quantities (A and Bij) are such as to nullify the effects of initial 
and boundary conditions. However, at long time, when nonlin­
earity is stronger, the behaviors in the case of mixing layers 
show no consistent pattern. The literature does not report on 
the long time behavior in the homogeneous shear layer case, 
so that no comparisons can be made. 

Although the calculations presented in this paper are two­
dimensional, they might still be relevant to the physical engi­
neering problem which is evidently three-dimensional (Moser 
and Rogers, 1993). To support this suggestion, we carried out 
a preliminary calculation of several three-dimensional mixing 
layers and compared some of the fields with the two-dimen­
sional results, using similar initial conditions. For example, Fig. 
10 (b) is the Reynolds stress tensor obtained from the three­
dimensional case. The short-time behavior clearly shows some 
agreement with the two-dimensional case. We point out that 
the two-dimensional initial conditions may not be appropriate 
for the three-dimensional simulations, from a mode excitation 
stand point. However, it is still true that the oblique shock 
waves, which are the optimal initial perturbation for the three­
dimensional case, may not represent the physical engineering 
mixing layers. Thus, the comparison just discussed for two­
dimensional and three-dimensional cases might be relevant. 

The temporal oscillations in Rij (Fig. 10 (a», as well as in 
A and Bij, after the initial transient seems to be related to the 
vortex structure in the physical, spatial mixing layers. Equiva­
lence between the temporal and physical mixing layers is as­
sumed via the Taylor's hypothesis, which, for our setup, takes 
the form: 

where te = (!:::..UooI8 o)t', with t' as the dimensional time. 
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Taking the case Me 0.8 as an example (Fig. 10 (a»), the 
period of the oscillation of RIl is approximately 40 along the t, 
axis, which corresponds to a traveling distance of 20 in space 
(U~ = 1). The latter is also equal to the size of our computa­
tional domain in which only one vortex is contained. Therefore, 
the temporal oscillations in some of these variables are related 
to the repetition of the domain under the assumption of periodic­
ity in space. 

To examine the validity of this explanation, we carried out 
a test in which two vortices were forced into the same size of 
computational domain. We observed that the flow contains two 
cells (not shown) at short time (0 < t, < 50), but that the two 
cells coalesced into a single cell at a later time (t, > 100). 
At short time, when two cells were present, the period of the 
oscillations reduced to approximately 20 in time te , correspond­
ing to a streamwise spatial distance of 10, which is consistent 
with Taylor's hypothesis. When the two cells coalesced, the 
period in time te becomes 40, which is the same as that for the 
regular calculations with one vortex. Therefore, the explanation 
put forward above appears tenable. 

Finally, the relevance of the second moment calculations to 
engineering may not be obvious. However, the results in this 
paper do show that, because of small magnitudes, modeling 
efforts do not need to place much emphasis on the pressure 
dilatation, the convective transport of Reynolds stress by the 
mean flow, the term [1] and the "remaining" terms in Eq. (3). 
Specific numerical details of the various second moment terms 
are useful in order-of-magnitude analysis for turbulence model 
development. For example, models must recognize that R12 is 
negative, for applications within the ranges of the parameters 
reported in this paper. The reader may also appreciate that the 
temporal histories provided for the various turbulence quantities 
in Figs. (7) through (10) are, in fact, statements about the 
variation of these quantities along the streamwise direction. 
Obviously, this is useful turbulence model data. 
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