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Transient Plumes from Convective Flow Instability in
Horizontal Cylinders

Foluso Ladeinde* and K. E. Torrancet
Cornell University, Ithaca, New York 14853

In this paper we report on a transient flow instability phenomenon in a horizontal cylinder whose wall is
subjected to a step increase in temperature. Pertinent previous work on related subjects is reviewed, and the
appropriate governing equations aud their numerical simulation are discussed for the present problem. The flow
is governed by the Rayleigh number Ra as the other parameters are kept fixed. Studies are carried out for
0 < Ra < 10°. The flowfield consists of two cells for Ra < 105. Boundary layers at the wall exhibit a filling box
phenomenon, which leads to a vertical stable stratification of the interior temperature field. The two-cell mode
is temporarily unstable at Ra = 10%, and a plume from a point source of buoyancy at the bottom of the cylinder
evolves early in the transient. The downward motion of the stratification front suppresses the growth of the
plume, and the flow is restabilized as the front approaches the bottom of the cylinder. The initial and final state
in the system is a motionless fluid isothermal at the initial and new wall temperatures, respectively.

Nomenclature

e, = unit vector in the direction indicated by a
g = gravity vector, m/s?
g = absolute value of the gravity vector, m/s?
k = thermal conductivity, W/m -K
o = origin of the inertial coordinate frame
P = dimensional total pressure, N/m?
Pr = Prandtl number
D = dimensionless reduced pressure
R = radius of cylinder, m
Ra = gravitational Rayleigh number
r = radial direction in polar coordinate

= dimensionless time

= dimensionless temperature
7, = bulk temperature
Ton = volume-averaged temperature
t = dimensionless time
u = dimensionless velocity in X or x direction
u, = dimensionless velocity in r direction
Uy = dimensionless velocity in 8 direction
u = (u,v)*, (u,u,w)* or (u,v,T)* depending on context
v = dimensionless velocity in ¥ or y direction
w = dimensionless velocity in Z or z direction
X, x = x direction in inertial Cartesian frame of reference
Y,y = y direction in inertial Cartesian frame of reference
Z,z = z direction in inertial Cartesian frame of reference
@ = thermal diffusivity, m2/s
B8 = thermal expansion coefficient, 1/K
AT = temperature difference T - T,, K
AT = temperature difference T,, — 7,, K
At = time step size
¢ = axial vorticity
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[/} = azimuthal direction in polar coordinate
v = kinematic viscosity, m2/s

T = viscosity ratio

P = dimensional fluid density, kg/m?

'/ = Stokes stream function

Subscripts

0o = reference value, hydrostatic

w = wall

Superscript

* = transpose

Introduction

HE present study pertains to gravity-driven thermal con-

vection in a horizontal cylinder. The need for a more
detailed understanding of the system has been motivated by
the wide industrial application. Such applications include the
use as heating vessels in chemical industries, extended solar
heating of chemical (e.g., petroleum) storage vessels on hot
days (with particular relevance to the tropics), cooling of
containers for storing heat-producing fluids, and the cooling
of liquid hydrogen and liquid deuterium moderators and
targets for high-energy physics experiments. Crystal growth
ampoules (e.g., in the preparation of semiconductors, insula-
tors, and metals, in materials processing) are long horizontal
cylinders which are subjected to substantial axial temperature
gradients by the furnaces in which they are placed. The latter
application might involve microgravity and an inclination of
the residual gravity vector. Other important applications of
the present work are the transient heating of horizontal oil
pipelines for the restart (refluidization) of the oil flow and the
transient cooling of pipes and containers filled with water and
their eventual freezing in cold climates. Studies of thermal
convection in a horizontal cylinder are also of intrinsic aca-
demic interest. )

Previous studies on horizontal cylinders can be grouped

according to how the motion is generated vis-a-vis the imposed
temperature gradient. These groups include the imposition of
a temperature gradient on the bounding surface,! a uniform
and constant heat flux on the surface,’ a volumetric heat -
generation,* and keeping the wall at a uniform temperature
that changes with time at a constant rate.® In other studies®
and the present one, flow is driven by a step-change in wall
temperature. ’
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The flows in these systems usually consist of two-cell con-

“'yvection modes at low to moderate parameter values, except in

the system in which flows are driven by a specified tempera-
ture gradient at the wall. The possible mode for this latter case
ranges from a single-cell pattern to a multicellular pattern,

> depending on the manner (wall-region) in which the tempera-

ture gradient is imposed.
The experimental investigations by Maahs and David,’
Deaver and Eckert,” and Beloff et al.” have shown that the

' two-cell mode is unstable at higher parameter values, and

other convective modes have sufficient amplitudes to modify

- the flowfield. Depending on whether the surface is heated or

cooled, eddies are formed at the bottom (top) of the cylinder.
The instability is manifested in what we refer to as thermal
plumes in the temperature field. (See Townsend® for the ap-
propriateness of the terminology ‘‘thermal plume.”’) Except
for the interferometric studies by Hauf and Grigull® only very
sketchy details have been given for the instability phenome-
ner:. The localized eddies are usually represented by hand
sketches, and the plume structure in the temperature field is
never reported. The flow was not visualized in the study by
Hauf and Grigull. Also, we are not aware of any numerical or
analytical studies that have reported on the instability.

There are several features of the present problem that could
pose considerable difficulties for most numerical methods.
First, the instability starts out as weak eddies. We believe that
dissipative time integration schemes would ‘‘wash off’’ the
weak eddies unless the time step size is sufficiently small at the
time the eddies are being formed. (This latter requirement is
indzpendent of any numerical stability restriction on time step
size.)

The second factor is related to the singularity at the axis of
the cylinder. The singularity poses considerable difficulties for
the finite difference method for transient Navier-Stokes.® The
errors introduced by ad hoc numerical techniques for handling
the singularity are expected to be very serious at the large
amplitude of the flows in the plume regime. Third, the transi-
ent nature of the present problem is such that large amplitude
flows occur only for a relatively small fraction of the total
transient period. Therefore, time integration schemes in which
the time step size is chosen with due regards for the physics
(nut necessarily the numerical stability) of the flow are very
useful. Also, we should be able to set a maximum limit on the
time integration error allowed at any time step.

The finite difference calculations by Takeuchi and Cheng!®
probably contacted one of the first two problems above. Their
study was a numerical investigation of the problem studied
experimentally by Deaver and Eckert. However, while the
bottom eddies were observed at Rayleigh number (to be de-
fined later) of Ra =6 x 10° in the experiments, the finite
difference calculations did not pickup the eddies even at
Ra = 107, Takeuchi and Cheng ascribed the discrepancy to the
relatively early termination of the calculations.

We have developed a penalty Galerkin finite element code!!
with capabilities to handle the foregoing difficulties. The pur-
pose of the present paper is to report on a successful simula-
tion of the instability phenomenon with the code. We also
want to discuss the heat-up processes and the physics of flow
in the system for a fairly wide range of parameter values.

In the next section, we will give the Boussinesq equations
geverning thermal convection in a horizontal cylinder, and the
parameters of the problem will be identified. This is followed
by a brief description of the various schemes for temporal and
spatial integration of the governing equations. Thereafter,
Iesults are discussed for a range of parameter values, which
include the plume regime. Concluding remarks and a list of
references are given at the end of the paper.

Governing Equations
The physical model and coordinates are shown in Fig. la.
The equations for thermal convection in an incompressible
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Fig. 1 Physical model and computation grid.

viscous fluid are those stating the conservation of mass, mo-
mentum, and energy. The appropriate Boussinesq equations
for the present problem are

vV-u=0 (§))
ou
—+u-vVvu=—Vp+Prv-=w
at
[Vu + (Vu)*} + RaPrTB 2
QZ+u-VT=V2T ?3)
at
where
u = (u,v,w)*, B = (0,1,0)*
Pr = yy/a = Prandtl number
and

, _ 8PATR?
- ra

= gravitational Rayleigh number

Also, the nondimensional viscosity, w, which requires a speci-
fying equation appears. A superscripted asterisk on brackets
implies the transpose of the tensors in the brackets. The pro-
perties involved include »,a,g,8,R, which are the kinematic
viscosity of the fluid (with a reference value of vg), the thermal
diffusivity of the fluid, the absolute value of the normal
gravity vector, the thermal expansion coefficient, and the
radius of the cylinder. The pressure p that appears in Eq. (2)
is the reduced pressure

RZ
P =— [P+ pogy]
poc?

and AT =T, —T,

We have restricted the present calculation to a two-dimen-
sional domain in the (r,8) coordinates of the cylinder in order
to avoid the large computer time and memory needed for
time-dependent, three-dimensional simulations. Moreover, no
significant motion in the axial direction has been reported for
the flows in the instability regime. All the flows studied in the
present paper are laminar.
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The initial condition in the system is
u=0,T=0
u and T are finite at r =0
and the conditions on the surface of the cylinder are
u=0,andT=1(=1)

The Stokes stream function y and the axial component of
vorticity { can be obtained from the relation

13 10y, _
§'=;a—r( o)—"%' — Ay “@

where

_#1s,18
S trar TR

The heat-up process in the system can be described by the
variation with time of some ‘‘average’ temperature. Two
quantities, T,, and 7, have been used for this purpose. We
have defined them as follows:

1{2x
§ § Trdodr
0J0

rd0 dr

and
1
v(x7)T(x3) dx

1
§ u(x))T(xy) dy §
27, =+=1 +

1 1
j 1 u(xy) dy j v(x7) dx
- -2

where x] and x3 denote the vertical diameter and the horizon-
tal diameter, respectively. Thus 7, is the volume-averaged
temperature, and 7, is the average of the two temperatures
obtained by collecting and mixing together fluids crossing the
vertical diameter and those crossing the horizontal diameter.
Better results are expected for T, when more diameters than
two are used for the calculation.

Finite Element Solution
A brief discussion of the numerical schemes used in the
computer code is provided in this section. The code is based on
the consistent (not the reduced integration) penalty Galerkin
finite element method. It uses a predictor-corrector scheme,
with or without a time integration error control. It also uses

'1.0-

0.8

0 T T v v \

0 0.2 0.4 , 0.6 0.8 1.0

Fig.2 Transient volume-averaged temperature.
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Fig.3 Transient bulk temperature.

one of the best known elements for Navier-Stokes (i.e., bi-
quadratic continuous Lagrange interpolation for velocities
and temperature and a linear discontinuous interpolation for
pressure). The code allows a constant time step size integra-
tion, or the physics of the flow could be followed to choose the
appropriate time step size which ensures a preset condition on
the maximum (local) time integration error. Both time integra-
tion schemes could also be combined in one simulation. We
believe that comparable capability to those discussed above
are needed for a successful and cost-effective simulation of the
instability phenomenon. The Newton-Raphson procedure has
been implemented for linearizing the convective terms of the
momentum and energy equations, and the assembled equa-
tions are solved using the skyline method. The mathematical
details of the various schemes are not given in this paper.
Interested readers could consult Ladeinde!! for details.

Results and Discussions

In this section we will describe the observed flow and tem-
perature fields in our numerical simulation of normal gravity-
driven thermal convection in a horizontal cylinder for Ra
values up to 10°. The initial and final state for this problem is
a motionless fluid isothermal at the initial and the new wall
temperatures, respectively. Thus, the motion occurs between
the two stagnant states.

The code used for the present problem has undergone very
stringent tests to establish its validity. Such tests include
isothermal and nonisothermal, free and forced, transient and
steady flows, with or without volumetric heat generation. The
code has also been tested for convection in rotating and self-
gravitating cylinders rotating about their axes in a normal
gravity field. However, no purpose is served by a further
discussion on the test cases.

We have provided Figs. 1-16 for the discussions of the
results obtained in the present study. Figures 1b and 1c show
the computational grids used for the calculations. Figure 1b,
which consists of 105 element and 449 nodes, was used for the
simulations involving Ra =< 10°. Figure lc has 153 elements
and 649 nodes and was used for the simulations involving

= 10%. The heat-up process in the system is presented in
Figs. 2 and 3 in terms of the volume-averaged temperature and
the bulk temperature. A convective instability phenomenon
observed at early time in flows involving Ra = 10% will be |
discussed later in this paper. One manifestation of the phe-
nomenon is the large amplitude associated with the oscillation
about zero of the stream function values at cavity center.
From Fig. 3 we observe that the latter process is also mani- -
fested in the bulk temperature profile. Such oscillations are
absent in the volume-averaged temperature. Therefore the
bulk temperature concept introduced in this paper is probably
a more accurate measure of heat up in the system than the -
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-110(10)120
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¥ = -.72(.09)0.81
T = .997(.1E-3)1.0

t = .00845
Fig. 4 Transient motion at Ra = 105 (note that T\, =1, ¢, = 0). ¥ - 6?%8?30

volume-averaged temperature, especially if more diameters
than two are used for calculating the bulk temperature.

The transient flowfields show similar qualitative behavior
for all nonzero Ra values up to 10°, and the typical case of
Ra =10° is used for the discussions. The flowfields for
Ra = 10 are also discussed since these are quite different from t = .0153
those for lower Ra values studied. ¥ = -42(6)48

The temporal development of the flowfield is rather simple T =0(.06)1.0
for Ra < 10° and consists of an initially weak two-cell pattern
(kidney beans) that relaxes into “‘fuller” cells as the flow
approaches the final state (see Fig. 4). The two-cell circulation
pattern in meridian (r, 6 in this problem) plane is a familiar
one from previous experimental studies and from the finite
difference study by Takeuchi and Cheung. The convection
cells are due to the gravitational torque [i.e., g X Vp, where A
p = pg (1 + BAT)], the associated vorticity vector being axial in = .0918 47
direction. Since gravity is directed vertically downwards, and = -16(2)18 :Zfﬁm
the wall of the cylinder is heated, lighter, high temperature = .82(.01)1.0 ‘"{a‘} =

fluid at the wall is transported upwards and, by mass conser-
vation, is replaced by cooler fluid from the interior. The
process is continued as the latter fluid is in turn heated and
transported to the interior.
A filling box phenomenon'? that results from the laminar
convection boundary layers at the ‘‘vertical’* wall is noticeable
in the temperature field at # = 0.0085 and has become evident
at t = 0.0398. The consequent stable vertical stratification of
"the temperature field can be observed at this time from the
isotherms. (Note the downward movement with time of the
stratification front.) The flow increases in strength (as mea-
sured by stream function) from an initial value of 0 to a peak
value of approximately 50 at # = 0.0085. The flow decreases in
strength thereafter and has become quite weak by ¢ = 0.6610.
An isothermal condition has essentially been established in the
cylinder at this time (temperature is approximately unity at all Fig.5 Transient motion at Rz = 106 (note that T, = 1, y» = 0).
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hot fluid in the form of eddies has risen above the heated wall

by t = 0.00367 and more fluid is subsequently drawn in (en-
! trained) and heated. Momentum flux presumably increases
with distance up the plume through the action of normal
gravitational buoyancy. The mass flux also increases as the
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Fig. 6 Vertical velocity component along the horizontal diameter
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Fig. 7 Vertical velocity component along the horizontal diameter
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Fig. 8 Vertical velocity component along the horizontal diameter
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points in the cylinder). Fluid viscosity ultimately damps out
the residual velocities.

The flowfield observed at Ra = 10° (see Fig. 5) is distin-
guished by the large strength and the production of a laminar
thermal plume that originates from a point source of buoy-
ancy in the bottom region of the heated wall. (Note that the
gravitational potential energy is greatest at the bottom of the
cylinder, and the bottom therefore represents a point source of
buoyancy relative to neighboring points.) A weak column of

plume entrains neighboring fluids. The entrainment process
results in a continuous growth of the eddy region, and the two
main convection cells are continuously pushed towards the
wall by the growth of the eddies because of the weaker flows

Fig. 9 Conduction temperature profile along the horizontal

diameter.
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Fig. 10 Temperature distribution along the horizontal diameter

(Ra =10%).
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Fig. 11 Temperature distribution along the horizontal diametgr

(Ra =105).
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in the outer part of the main cells. A substantial growth of the
eddies is observed only after the maximum flow strength has
occurred. We observe from the figures that the eddy region
(and the associated plume) subsequently gets smaller, finally
disappearing as the flow approaches zero strength. We also
note that a portion of the fluid has not felt the heat input at
the wall, and the minimum temperature is still zero by the time
the eddy region starts to disappear. The latter observation is
presumably due to the value of the Prandtl number used
(Pr =T7). We also believe that a finer grid than 649 mesh
points is needed for a more accurate solution at short time.
Nevertheless, the performance of this coarse grid is rather
impressive for this complicated problem. Qualitative support
for the flow documented in this paper is provided by the
experimental studies of Hauf and Grigull® and the recent
investigation of Beloff et al.”

Concerning the disappearance of the plume we note that the
continuous downward movement of the stratification front
suppresses the growth of the instability at the bottom region,
as the instability (presumably) does not have sufficient inertia
to penetrate the stratified region. The flow is restabilized when
the front approaches the bottom of the cylinder.

it is pointed out that the flowfield in the instability flow
regime is laminar despite the complicated flow and tempera-
ture fields observed. This conclusion is reached on account of
the rather coarse mesh used in the present calculations. Deaver
and Eckert have also suggested a laminar flow for the instabil-
ity regime.

- Figures 6-8 show the distribution of the vertical component
| of velocity along the horizontal diameter for Ra = 10%, 10°,

1.0
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Fig. 12 Temperature distribntion along the horizontal diameter
(Ra= 106).
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and 10°. In general there is an upward flow at the sidewalls
and a much weaker downward flow in the interior. The high
velocity region gets more and more confined to the sidewalls
as the viscous boundary layers become more prominent at
larger parameter values. Isotherms for conduction (Ra = 0)
are concentric circles with center at the origin. The conduction
temperature profile along the horizontal diameter is shown in
Fig. 9. With increasing Ra thermal boundary layers result in a
temperature distribution (along the horizontal diameter) in
which high temperature gradients are increasingly confined to
the sidewalls, with uniform values of temperature in the inte-
rior (Figs. 10-12). The horizontal component of velocity
across the vertical diameter is in general much weaker than the
upward flow. The magnitude of such flows is insignificant for
Ra =< 10°. At Ra = 105, a relatively strong horizontal flow is
observed across the vertical diameter, although such flows are
confined to the eddy region at the bottom half of the cylinder
(see Fig. 13). Concerning the temperature distribution along
the vertical diameter, we observe that the parabolic (conduc-
tion) profile about y =0 becomes more and more skewed
towards y = — 1 with increasing Ra so that an increasingly
higher temperature gradient is produced at the bottom of the
cylinder (Figs. 14 and 15). The instability in the bottom half of
the cylinder is attributable to the high heat flux in that region.

The relatively large amplitude of the oscillation (in the
stream function at the center) for simulations involving
Ra =10°% is shown in Fig. 16. The behavior is not an arti-
fact introduced by the numerical procedure, and it is expected
from the physics of the flow. Studies devoted to such behav-
jors are available in Staehle and Hahne!? (and the references
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Fig. 14 Temperature distribution along the horizontal diameter
(Ra =105).
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Fig. 15 Temperature distribution along the horizontal diameter
(Ra =109).
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3
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Fig. 16 Variation of cavity center stream function with heating time
(Ra = 105).

therein). Based on our experience, we believe that, although
the grid used is not fine enough to give highly accurate results,
it is sufficiently fine not to cause the (apparently) random
temporal behavior alluded to above. Also, such behaviors
could not possibly have resulted from inappropriately large
time step size because of the control of the maximum time
integration error in our code ( < 0.2%). The amplitude of such
oscillations (or the implied low damping factor) are negligible
at lower Ra values with amplitudes of O(10~9) for Ra = 10°.
The behavior is also dependent on the Prandtl number and on
geometric factors.!?

The studies on the onset of similar behaviors (random ef-
fects) in convection layers and the subsequent time-depen-
dence (or transition to turbulence) of the flow have been
reviewed by Busse.' The critical Ra for the onset of the
oscillations (instability) is clearly within the range 10°<
Ra =< 10° for the present problem, but it is clear that the
potential (temporal) dynamics of the resulting flow cannot
be realized because of the transient nature of the present
problem.

Conclusion

In this paper we presented the result of a Galerkin finite
element simulation of the transient flows between two stag-
nant states in a horizontal cylinder. The flow is governed by
the Rayleigh number, the Prandtl number, and the viscosity
ratio. Studies were carried out for Ra values up to 10%, and the
Prandtl number and the viscosity ratio were kept fixed at 7
and 1, respectively.

For Ra =< 10°, the flowfield consists of two cells. Bifurca-
tions from the two-cell mode originated from the bottom of
the cylinder at Ra = 10%. The instability is manifested as a
thermal plume in the temperature field.

We believe that a successful numerical simulation of the
instability phenomenon requires a nondissipative time integra-
tion scheme so as not to damp out the rather weak eddies that
are formed at the beginning (in an Ra and/or time space) of
the instability. An error control scheme that follows the phys-
ics of the flow is recommended if the physics of the flow is of
interest, and schemes that avoid ad hoc techniques for han-
dling the singularity at the cylinder axis might be mandatory.
An accurate code for the present problem would be one that
picks up the bottom eddies as soon (in and Ra and/or time
space) as the eddies are formed. The gravitational potential
energy is very large at higher Ra, and the eddies are very
strong and not easily dissipated numerically. The limiting
processes are expected to resemble heating the cylinder from
the bottom half and cooling it from the top half. Bottom
eddies are the expected main convection mode in this case, as

T
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this limit represents the cylinder ‘“‘analog’ of the Bénard
problem. (Only a quasisteady state may be possible in this
limit.) The latter flows have been simulated in a steady-state
finite difference calculation'’ and in a small amplitude finite
difference calculation.!’s Gershuni and Zhukhovitskii’ have
examined the small amplitude instability of the equilibrium of
fluid within a horizontal cylinder heated from below using
variational mathematics.
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