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Direct numerical simulation (DNS) is used to examine scalar correlation in low Mach number, 
polytropic, homogeneous, two-dimensional turbulence (M,V<0.7) for which the initial conditions, 
Reynolds, and Mach numbers have been chosen to produce three types of flow suggested by theory: 
(a) nearly incompressible flow dominated by vorticity, (b) nearly pure acoustic turbulence 
dominated by compression, and (c) nearly statistical equipartition of vorticity and compressions. 
Turbulent flows typical of each of these cases have been generated and a passive. scalar field 
imbedded in them. The results show that a finite-difference based computer program is capable of 
producing results that are in reasonable agreement with pseudospectral calculations. Scalar 
correlations have been calculated from the DNS results and the relative magnitudes of terms in 
low-order scalar moment equations determined. It is shown that the scalar equation terms with 
explicit compressibility are negligible on a long time-averaged basis. A physical-space EDQNM 
model has been adapted to provide another estimate of scalar correlation evolution in these same 
two-dimensional, compressible cases. The use of the solenoidal component of turbulence energy, 
rather than total turbulence energy, in the EDQNM model gives results closer to those from DNS in 
all cases. 0 1995 American Institute qf Ph,ysics. 

I. INTRODUCTION 

Recent studies of compressible turbulence in both decay- 
ing and forced”* situations have enhanced our understanding 
of the roles of initial conditions, low Mach number asymp- 
totics, energy flow, and spectral dynamics. However, funda- 
mental studies of compressible turbulence that include dy- 
namically passive scalars are scarce. In our work we use 
direct numerical simulation (DNS) to examine scalar trans- 
port by low Mach number, polytropic, two-dimensional tur- 
bulence (M,C0.7), for which the initial conditions, Rey- 
nolds, and Mach numbers have been chosen to produce (a) 
nearly incompressible flow dominated by vorticity, (b) nearly 
pure acoustic turbulence dominated by compression, and (c) 
nearly statistical equipartition of vorticity and compressions. 
The connection between initial velocity and pressure field 
data and the occurrence of any of the above regimes of flow 
have been elucidated by previous two-dimensional pseu- 
dospectral calculations of polytropic flo~.~ We have gener- 
ated turbulent flows typical of each of these cases and im- 
bedded a passive scalar field in them. 

This paper is organized as follows. The asymptotic be- 
havior of the flow variables is presented in Sec. II. This is 
followed in Sec. III by a discussion of consistent initial con- 
ditions for both velocity and scalar fields, followed by the 
presentation of two versions of the first and second moment 
equations for a homogeneously distributed scalar in com- 
pressible turbulence. Our numerical procedures are summa- 
rized in Sec. IV, while the extraction of turbulence and scalar 
statistics is discussed in Sec. V. In Sec. VI we validate our 
numerical procedure by comparing DNS calculations from 
our computer program with pseudospectral calculations by 
Ghosh and Matthaeus3 (hereafter referred to as GM). We also 
examined the relative magnitudes of terms arising in the 
first- and second-order scalar moment equations and com- 

pared scalar correlations from DNS with those from an 
EDQNM (eddy-damped, quasinormal Markovian) model. 

II. ASYMPTOTIC ORDERINGS 

In this section, the asymptotic behavior of the flow vari- 
ables is summarized. To this end, we consider the three per- 
spectives presented by GM on the nature of low Mach num- 
ber polytropic hydrodynamics. The following orderings have 
been reported: nearly incompressible, 

/u/=0(1), ~VXll~=O(l), ~v.lll=o(M;), 

p=O(lL 

6p=O(M,2), Sp=p’+p”=O(M;), 11/1,61; 

modally equipartitioned compressive wave, 

~vxu~=0(1), ~V.ul=O(l), u’,uc=o(l), 

compressive wave, 

IV.ul=O(l). IVXUl--+O. 

Concerning the asymptotic behavior of the scalar field 4, 
note that the temperature cannot be considered a passive sca- 
lar except in the asymptotic limit of nearly incompressible 
flow, as pointed out by Zank and Matthaeus.” The scaling 
results summarized above are unaffected by a dynamically 
passive scalar field. However, the scaling of 4 will be deter- 
mined by the velocity scaling and perhaps the initial scalar 
field. In the incompressible flow limit the initial scalar field 
has been shown to have only a minor effect.’ Finally, we 
point out that in the DNS procedure the various equations 
(density, momentum, and scalar) are solved in the complete 
form, so that no terms are neglected on the basis of the 
asymptotic results. The initial density, velocity, and pressure 
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fields, and the Reynolds and Mach numbers ensure that the 
correct asymptotic results are obtained from the DNS calcu- 
lations. 

111. INITIAL CONDITIONS 

The connection between initial velocity and pressure 
field data and the occurrence of any of the flow regimes 
listed in Sec. II have been elucidated by GM in two- 
dimensional pseudospectral calculations of polytropic how. 
We generated turbulent flows typical of each of these cases 
and imbedded a passive scalar field in them. The initial con- 
ditions are classified as follows: SV/PS (Solenoidal Velocity/ 
Pseudosound), 

v-u=o, P(X) = 1 + hs(x), 

where G&.(x) is a “pseudosound” correction for initial 
density; 
SV/CD (Solenoidal Velocity/Constant Density), 

v*u=o, p(xj=lfS/+s(x)+Sps(x); 

RVKD (Random Velocity/Constant Density), 
- - 
Iv-u[pJpxuI, p(x)= 1+ Spps(x)+ @s(x); 

LVKD (Longitudinal Velocity/Constant Density), 

vxu=o, p(xj=l+ &ps(x)+ @s(x). 

Here lips(x) is the acoustic density correction for initial den- 
sity that satisfies 

&?s(x) = - %%(4 

in the initial state. 
To generate the foregoing conditions numerically, we 

use finite difference and Fourier transform, as appropriate, 
moving back and forth from physical space to Fourier space. 
As an example, in order to generate a solenoidal velocity 
field, we carry out the following steps. 

(1) Generate a random velocity field u in physical space, 
which satisfies the standard normal distribution. 

(2) Transform u from physical space to G in Fourier 
space. 

(3) For SV/pS, SVKD, and LV/CD conditions, decom- 
pose the velocity field 6 in Fourier space into its incompress- 
ible part i? and compressible part ii’ according to the pre- 
scription 

k-ii 
ii’= --T .k, k- 

i-+&fiC* 

(4) Rescale si as follows: 

1 <ks x/i?, 
otherwise, 

where *‘i” is an index defined by i- 46kCif 4, with 
k = &$?$. The spectral energy of the randomly generated 
field is given by 

E*(k, A,) = I%L ,k,JI*, 

with a corresponding autocorrelation spectrum of 

Ef-= 2 i.-l/*~k~i+1/* lick’ ‘lcy)12’ 

(5) Transform scaled velocity i to the physical space 
with an inverse FFT: 

ii’* d, SVIPS and SVICD, 

gL&,uc, LV/CD, 

i&-U, RVICD. 

(6) Normalize u,,= 1 by the transformation 

4x1 
u(x)+ -2 

%ms 

where 

For constant density condition (CD) cases, we set the 
initial density to 

p(x,O)= 1 .o, 

and obtain pressure from 

p=py. 

For the pseudosound condition (PS), we obtain Gpps(x) 
by first solving for the pressure tluctuation p from the Pois- 
son equation for the incompressible component of the initial 
velocity field: 

v*p= - yM~V.(uWu~), 

where the right-hand side in this equation is due entirely to 
the solenoidal velocity component u1 from a random number. 
It is pointed out that unphysical pressures were obtained 
from this equation when Mach number exceeds 0.6, a result 
that was confirmed by GM (oral communication with Dr. 
Ghosh). The nearly incompressible asymptotic theory breaks 
down at Mach numbers greater than 0.6 

The pseudosound density fluctuation is obtained from 
the relation 

1 
4+s=y P* 

%Wy)+%,kx,$J EW, h,j 
E*(k,,k,,j’ 

where i represents the randomly generated held, which is 2’ 
(SV/PS and SVKD), fi (RVKD) or ii” (LVKD). Ei is an 
imposed spectrum that was chosen to match that in GM and 
is specified as 

We obtain the initial pressure and density by 

P= 1 +p, p=1+spps. 

Initial conditions for scalar #x,0) were generated as a 
random variable &k,Oj, in Fourier space, of the form 

$(k,O)=@(kjexp[2rri6r(k)], 
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where B(k) is a uniformly distributed random number be- 
tween 0 and 1. The PDF of 8 is a box of height 1 that varies 
from 0 to 1 along k. Here Q(k,O) is prescribed as 

Q(k,O)=exp[-c(kz+kt)], 

where 1 k,] ,I k,] =~4, and c =O. 1. Larger values of c give nar- 
rower Gaussian profiles, which are undesirable numerically, 
as they require more grid points for resolution. For the in- 
compressible case,5 the eventual scalar evolution is fairly 
insensitive to the initial scalar field, and any well-behaved 
+(x,0) is suitable. It will be assumed that this is the case in 
the present studies, with partial justification coming from the 
fairly low Mach numbers. To ensure that $fk,O) is real when 
transformed to the physical space, we set 

@C-W)= $*(kO), 

where p(k,O) is the complex conjugate of $fk,O). Finally, 
we transform $fk,O) into the physical space and normalize 
all nodal values of 4 by dividing by the rms value 
(C e/N) ‘12, where N is the number of nodes in the grid. 

For homogeneous, isotropic turbulence and scalar field 
$(x,t) obeying the conservation equations given in (5) below, 
the first- and second-order moments of 4 satisfy the follow- 
ing equations (1) and (3). The density-weighted scalar, p$, 
satisfies first and second moment equations (2) and (4): 

a In p A$’ ~=(v.uj+f+D, y--- 
i i?Xi’ 

GF7 ----=(v.u)($b’)2-2D~ $g 
at I .i 

(1 

+D ai5W a In P -- 
’ aXj dxj ' 0) 

add# - apt+’ dp’ 4’ 
at 

=-(v.u)(p’~‘)2-2D~ r --&- 
J j 

- 
-2~4 (V4p’qS+ZD+p5b 

><ap’ 4’ a hp a(~‘+‘)* d In p 

aXj 
-+Dg 

dXj dxj dxj * 

(4) 

In these equations an overbar means an ensemble or spa- 
tial average, a prime indicates a fluctuating variable with 
zero mean, and the diffusivity D4 has been taken as constant. 
It should be noted that the use of a density-weighted concen- - 
tration average ~4, rather than q itself, simplifies the behav- 
ior of the scalar mean quantity [Eqs. (1) and (2)], but at the 
expense of a more complex expression for scalar variance 
[Eqs. (3) and (4)], arising from the molecular diffusion pro- 
cess, which is assumed to be Fickian. In Sec. VI, the discus- 
sion of results, our finite-difference based computer program 
is used to evaluate each of the terms on the right-hand side of 
Eqs. (I), (3), and (4). One purpose is to compare the relative 
importance of velocity divergence-scalar correlations and 

density gradient-scalar gradient correlations, both of which 
are unique to compressible flow. Another is to evaluate the 
“compressible” molecular diffusion terms in (3) and (4) vis 
a vis the traditional dissipation terms, which have been 
placed as the second terms on the right-hand side of (3) and 
(4), respectively. Note also the difference in sign of the first 
terms on the right-hand side of Eqs. (3) and (4), which con- 
cern the correlation between velocity divergence and squared 
scalar fluctuations. These terms play analogous roles in (3) 
and (4), respectively, the difference in sign is a consequence 
of density weighting since density fluctuations and velocity 
divergence fluctuations roughly counterbalance each other. 
Our numerical results, discussed in Sec. VI, confirm this be 
havior. 

IV. NUMERICAL PROCEDURE 

Our computer program has been deveioped to include 
the complete (three-dimensional) Navier-Stokes and energy 
equations and a scalar transport equation. However, in the 
present study, the program was modified to be compatible 
with the polytropic conditions in GM. Unlike in GM, where 
the equations are solved with the pseudospectral method, we 
use a finite-difference-based essentially nonoscillatory 
(ENO) procedure,6 to assess the performance of the latter for 
low Mach number turbulence. Compared to the pseudospec- 
tral method, the EN0 scheme has better nonlinear stability 
properties, which make it more suitable for fundamental 
work-on supersonic and hypersonic flows. The specific nu- 
merical approach that we have used follows Shu and 
Osher,7B Shu,g and Shu et aZ.,‘O although the following 
modifications to Shu’s procedure were necessary in order to 
be compatible with the scalings in GM and to include scalar 
advection. 

(1 j The initial velocities in GM, which were generated as 
described earlier, were multiplied by the scale factor ,lrM, 
to obtain a consistent scaling of the flow equations. 

(2) We removed the energy equation in Shu’s procedure 
and directly apply the polytropic relation: 

p=py. 

(3) We used a stencil that is biased for central differenc- 
ing, instead of an adaptive stencil. 

(4) We added a scalar equation to the equation set con- 
sidered by Shu or GM. The resulting equations for DNS can 
be written as 

(5) 
where 

/ 4 /O\ 

q=\;;# w=.,+(# 

/o\ 
giqj =uq+ 

0 I I P ’ 
\O/ 

and 
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p=p’. 

Compared to the expressions given in Shu,” the vectors 
r(q) and s(q) are only slightly modified by the inclusion of 
the scalar diffusion term D++,u, where D+ is scalar diffu- 
sivity. The Jacobians of the matrices r7flc7q and 3gl3q were 
evaluated and used in the EN0 procedure, as were their right 
and left eigenvectors. For a better accuracy of the EN0 so- 
lution, under the relatively low Mach number conditions in 
our study, we implemented the modification in Shd pertain- 
ing to a central stencil. Domain is a square of length 27r and 
a grid resolution of 64X64 is used, in order to match the 
conditions in GM. Calculations with 128 X 128 were also car- 
ried out for the scalar studies and to show grid independence 
of the GM results. 

V. COMPUTATION OF TURBULENCE AND SCALAR 
STATISTICS 

The primary dependent variables from DNS are p, pu. 
pu, and p+. From these, the turbulence and scalar statistics 
are computed. The definitions of the various turbulence 
quantities, as given below, follow those in GM. The excep- 
tions are the quantities with the subscript “turb,” which are 
quantities from which the effect of back transfer has been 
removed. In our work, removal was accomplished by exclud- 
ing the fundamental mode from the solenoidal fields, as de- 
fined below. The procedure in GM is more involved, as it 
includes some manipulations of the compressible modes as 
well. The definitions of the various turbulence and scalar 
quantities are given below, where an overbar indicates spatial 
averaging and angular brackets indicate time averaging: Av- 
erage internal energy, 

-7 P --/sy 
Eint=M;y( y- 1 j ; 

average kinetic energy, 

pu-u 
@&=y; 

local sound speed (dimensionless), 

c,(xj=M,*p(X)(Y-1)‘2; 

sonic Mach number of the turbulent flow, 

~,=%m,~[c,~x)l~ 

density fluctuation, 

Ap=(p’)-)?2)15 

Reynolds number, 

eddy turnover time, 

~E=hns)~~1~ 

where The results presented are for R(r) . 

(urms>= f ~lu,,.dt; 
0 

longitudinal velocity component, 

~L(pq@(~~)~2}1’2; 

transverse velocity component, 

UT={jFFT-1($)/2}1i2; 

turbulent solenoidal velocity, 

uf,,,=(I~-‘[~~+~(x)112)“2; 
turbulent total velocity, 

uturb=({FFT-1[ii(~)-;1~=l(xj]}2)*’2; 

turbulent Mach number, 

u 
M 

turb 
tub====; 

c,(x) 

internal energy spectrum, 

pidi)= k i- ,,2s&+ 1,2 l-i vliiZi)12; 
kinetic energy spectrum, 

where m refers to the number of modes in an annulus for the 
bin in spectral space. 

We define scalar correlation by 

R(r)=4(x)+(x+r) 

and obtain one-dimensional (xi ,x2) correlations from DNS 
solutions via the expressions 

and 

In terms of r = dm, scalar correlation is expressed as 

Rir)= i J$, r$l 4Cxi pxj) 

NI N2 

X C C $(xi+Axm ,Xj+AY,), 
m=l n=l 

where m, n, N,, and N2 are such that 

(Ax,,, , Ay,> ~{[WxiNx- l)lx[Wy(N,- 111) 
and 

t-= J-E. 
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FIG. 1. Characteristics of the M ,=OS SV/PS simulation. Results from the FIG. 2. Characteristics of the M ,=0.7 W/CD simulation. Results from the 
present work (lines) are compared with the pseudospectral calculations in present work (lines) are compared with the pseudospectral calculations in 
G M  (dots). In (a) the variation with time of the kinetic (Z&J and internal G M  (dots). In (a) the variation with time of the kinetic (ELin) and internal 
!Eintj energy are shown, where the dots denote results of G M  and the lines (Ei,j energy are shown, where the dots denote results of G M  and the lines 
denote results from present studies. In (b) the circular and triangular dots denote results from present studies. In (b) the circular, triangular, and square 
denote the results of G M  for M : and UL/CJ”, respectively. (c) shows the dots denote the results of G M  for UL/lJ&, , M :, and UC/UT, respectively. 
variation with time of AplMf, the dots denote results of G M  and the lines In (c) the circular and triangular dots denote the results of G M  for AplM,, 
denote results from present studies. In id) the circular and triangular dots and Ap/@, respectively. In (d) the circular and triangular dots denote the 
denote the results of G M  for P,i, and Ph,, respectively. The results in (d) results of G M  for Phi” and Pint, respectively. The results in (d) are for 
are for T,==20.5. The symbols are defined in Sec. V. T,-20.5. The symbols are defined in Sec. V. 

VI. RESULTS 

In order to validate our finite difference-based computer 
program, calculations from it are compared with the pseu- 
dospectral calculations of GM in Figs. l-4, which corre- 
spond to the cases SVIPS, SV/CD, RV/CD, and LVKD, re- 
spectively. Comparisons are made for the quantities E,,, 
Eint, Mz, 
ULI lJErb . 

AplMz, P,, , Pint, AplM,,b, ULIUT, and 
A discussion of the physics of the flows in Figs. 

l-4 is available in GM and is not repeated here. 
An examination of these figures shows that our program 

is capable of producing excellent results. For instance, the 
calculations for the quantities, Mz, AplM,2, ApIMturb, 
ULIUT, and ULIUT turb agree well with theoretical scaling re- 
sults. Further, quantitative agreement with GM is also appar- 
ent for many of the quantities. Differences in the treatment of 
back transfer in the two studies might explain the quantita- 
tive discrepancies that are observed in a few of the calcula- 
tions. Note that accurate results for the GM problem are 
those that reproduce the scalings in Sec. II of this paper. 
Thus, the actual numbers in our calculations do not have to 
match those in GM exactly, for us to have accurate calcula- 
tions. Nevertheless, the details of the results are of interest. 

Scalar transport by homogeneous turbulence has been 
studied for almost as long as homogeneous turbulence 
itselfill it has been widely used to evaluate closure models 
and to test theoretical concepts that are often more tractable 
for a scalar than for vector velocity or vorticity.12 Most of the 
published results have been concerned with incompressible, 

0.4 SV/CD Ma=O.7 

-7.r-- 

2.0. 
S-i 

18 
AP  

1.2 aL 

AP  .’ -- . 
*  l ‘%,b AP  a*. j;,~,l;w\.t- ^  t.r:‘g 3 

SV/CD MeO.7 

SV/CD Ma=&7 

lo-‘2L-.---- 
(d) 10” ;’ 

three-dimensional turbulence. In this paper we explore nu- 
merically the role of compressibility on some aspects of sca- 
lar transport when the fields are two dimensional. In the 
combustion literature, because the advective terms are sim- 
plified, it is common practice to use a density-weighted av- 
eraging process for concentration fields, even though mo- 
lecular diffusion terms become much more complicated in 
this formulation. Our results evaluate all terms in the mean 
and intensity scalar equations for both non-density-weighted 
[Eqs. (1) and (3)] and density-weighted [Eqs. (2) and (4)] 
concentrations. 

Figures 5-17 display the effects of compressibility on 
the following aspects of scalar transport. They show scalar 
flux, scalar correlation, and the calculations of the various 
terms in Eqs. (l)-(4) for the cases SV/PS, M ,=O.5 (Nearly 
Incompressible), RVKD, A4,-0.7 (Modally Equipartitioned 
Compressible), and LV/CD, M , =0.5 (Compressive Wave). 
These cases were chosen in order to represent various re- 
gimes of compressibility. 

Concerning the temporal behavior of the terms in (lj- 
(4), we have observed a high-frequency oscillatory behavior 
for the density, velocity, and scalar fields. An exception 
(not shown) is the dissipation term fz4 
= 2D~(d~‘ldxj)(d~‘/dxj) in (3), which tends to have a 
relatively smooth variation with time. This oscillatory phe- 
nomenon was observed using both coarse and fine grids, sug- 
gesting that the oscillations are physical and not artifacts of 
the numerical procedure. Similar nonmonotonic behavior can 
be observed in the velocity and density calculations of GM. 
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FIG. 3. Characteristics of the M,=O.l RV/CD simulation. Results from the 
present work (lines) are compared with the pseudospectral calculations in 
G M  (dots). In (a) the variation with time of the kinetic (Ekin) and internal 
(Ei,t) energy are shown, where the dots denote results of G M  and the lines 
denote results from present studies. In (b) the variation with time of 
UL/Ufti is shown, where the dots denote results of G M  and the lines denote 
results from present studies. (c) shows the variation with time of Ap/Mtwb ; 
the dots denote results of G M  and the lines denote results from present 
studies. In (d) the circular and triangular dots denote the results of G M  for 
PM, and Pt,,r, respectively. The results in (d) are for T,-20.5. The symbols 
are defined in Sec. V. 

In order to evaluate the magnitude of the other terms in (3), 
iJ(+‘>*/dt, (V-~)(qb’)~, ,and D4[a(+‘)‘/axj](a In plhjj, 
which all show high-frequency oscillations (Fig. 5), we have 
presented the same data again in Fig. 6, with the high- 
frequency oscillations filtered out. We filter by averaging 
over a time interval and plotting the sliding averages. 

The results shown in Figs. 5 and 6 for the scalar variance 
equation (3), are for the case RV/CD, M,=0.7. Note that the 
terms in this equation have been scaled with the scalar dis- 
sipation E+. It is evident from Fig. 6 that, for the filtered 
quantities, and ignoring the initial transients, the rate of de- 
cay of the mean squared scalar is equal, effectively, to e+, as 
it is for incompressible turbulence. This means that scalar 
variance evolution is not much affected directly by com- 
pressibility, except locally in time through the temporal os- 
cillations. Of course, the scalar gradients of which G+ is com- 
prised may be sensitive to compressibility effects. The 
behavior of the scalar quantities in the other two types of 
turbulence (SV/PS and LV/CD) are similar. 

The numerical calculation of Eq. (1) is shown in Fig. 7 
for the modally equipartitioned compressible case (RVKD, 
M,=0.7). It is evident that the diffusion term 

D&a ln plaxj)(a~‘laxj) is negligibly small and that dpldt is 
balanced by (V .u)4’ alone. This result is valid for all the 
turbulence cases studied. It is clear from (1) that homogene- 
ity does not guarantee a constant mean concentration $ in 
compressible flows, but from Fig. 8, the filtered version of 
Eq. (l), it is evident that the filtered, asymptotic value of 3 is 

LV/CD Ma==O.l 

1.6 

0.8 

o.o+-------- 
(b) ’ 4 rr, ’ * 

lo- 

(4 

? 
-121 .~ __L.  -c_ I .-.A 

100 10’ 10’ 
k  

LV/CD Ma=O.l 

FIG. 4. Characteristics of the M,=O.l LV/CD simulation. Results from the 
present work (lines) are compared with the pseudospectral calculations in 
G M  (dots). In (a) the variation with time of the kinetic (E,) and internal 
(EinJ energy are shown, where the dots denote results of G M  and the lines 
denote results from present studies. (b) shows the variation with time of 
AplM, , the dots denote results of G M  and the lines denote results from 
present studies. In (c) the circular and triangular dots denote the results of 
G M  for Ptin and Pint, respectively. The results in (c) are for T,=4.0. The 
symbols are defined in Sec. V. 

indeed constant in the compressible how cases we have stud- 
ied. 

The computed values of 2 (not shown) are smaller 
than 10e6 for all cases investigated. This is in agreement 
with the requirements of homogeneity and Eq. (2hince the 
initial fields in our studies have a zero value for ~4. 

Terms in the density-averaged variance equation (4) 

4.0rv-I  * I * I * I 1  & . $7  

T, 

FIG. 5. Temporal variation of the terms in IQ. (3) normalized by ~4 for 
RV/CD M,=0.7 using a 128X128 grid. The results in this figure have been 
normalized by the dissipation term e=2DB(a~‘/axj)(a~‘ldxi). The unfil- 
tered case. 
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FIG. 6. Temporal variation of the terms in Eq. (3) for RV/CD M, =0.7 using 
a 128X128 grid. The results in this fiiure have been normalized bv the , 
dissipation term E = 2D,(a~‘/axj)(d~‘laxj). The tiltered case. 

have also been calculated. Because p+ is zero, the third and 
fourth terms on the right-hand side of (4) should be zero, 
which we have observed to be the case from our numerical 
calculations. Moreover, the divergence term and the remain- 
ing density term (first and fifth, respectively) have an insig- 
nificant contribution for eddy turnover times greater than 3, 
compared to the dissipation term (second). This result is true 
for all the cases we computed (SV/PS, 11/1,=0.5, RV/CD, 
M, =0.7, and LV/CD, M, =0.5) and it implies that, as a prac- 
tical matter, density averaging in a homogeneous system 
does not complicate scalar variance evolution. As anticipated 
in Sec. III, we note. without showirm the result. that the 
filtered tern1 (V.U)(fJ’(b’)“IE& ii (4), where E$ 
= 2D~[d(p’~‘)ldxj][d(p’~‘)/dx,~], is virtually the mirror 
image about the time axis of the term (V -II> ( #P')~/E~, 
which is displayed in Fig. 6. 

-3.0 F---J--- 0 2 4 6 8 10 12 14 16 18 
T, 

FIG. 7. Temporal variation of the terms in Eq. (1) for RV/CD M,=O.7 using 
a 128X128 grid. Absolute values of the various quantities are shown The 
unfdtered case. 
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FIG. 8. Temporal variation of the terms in Eq. (1) for RV/CD M,=0.7 using 
a 128X 128 grid. Absolute values of the various quantities are shown. The 
filtered case. 

Scalar flux results are shown in Figs. 9-11 for RV/CD, 
M,r=0.7. Figure 9 pertains to one-point data for the scalar 
nux ~41, whereas the corresponding two-point velocity- 
scalar covariance results are given in Figs. 10 and 11. In 
order to isoIate compressibility effects in Fig. 9, the solenoi- -~ 
da1 (uj)‘4, dilatational (~j)~4, and total (u,;)‘+ compo- 
nents of scalar flux are plotted individually. They are scaled 
by the quantity uks4rms. 

Although strict isotropy requires that all three fluxes be 
identically zero, numerical computations of compressible 
turbulence have found it difficult to attain isotropy.r3 In our 
calculations of two types of turbulence the dilatational con- 
tribution is smaller than the solenoidal and both contribu- 
tions are oscillatory (Fig. 9). In a compressible, turbulent, 
homogeneous shear Bow with uniform mean scalar 
gradient,t4 it has been shown that the dilatational contribu- 
tion to scalar flux is negligible. Our result is consistent with 
this finding. 
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FIG. 9. Scalar flux for RV/CD M,=O.7 using a 128X 128 grid. Scalar tlux in 
the x direction is shown. Similar behavior is observed for the y direction. 
Note that the results in this figure have been normalized by the quantity 
%m nns. T9 
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Solenoid al I 

- 

FIG. 10. Velocity-scaIar covariance for RV/CD MS-O.7 using a 128X 128 
grid. Results are presented in terms of B(r’,t) at r=0.5 and are normalized 
by d,Am. The values of B(r’,t) evaluated with the compressible, sole- 
noidal, and total velocities are shown. Note that the time t in B(r’,t) is the 
eddy turnover time T, . 

The velocity-scalar two-point correlation function for 
isotropic fields can be written” as 

2~; &r,t) =B(r2,tjrj. 

The behavior of B(r’,t) for the case RV/CD, M,=0.7 is 
shown in Fig. 10 for t-=0.5 and, in Fig. 11, for its depen- 
dence on r and t. The various flux terms oscillate about zero 
for all cases considered. While a zero mean is expected for 
the incompressible (solenoidal) component, the results in this 
paper show that compressibility does not change this behav- 
ior, as far as the time-averaged values are concerned. How- 
ever, the amplitude and periodicity of the oscillation about 
zero depend strongly on compressibility. 

ILI,.~I’1.I11.“I.IIIIII1. 
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 

T 

FIG. 11. Velocity-scalar covariance for RV/CD M,=0.7 using a 128X128 
grid. Results are presented in terms of B(r’,t) for Ocrc3.2 and are nor- 
malized by r&q&. The values of B at eddy turnover times of I =O.O, 4.24, 
7.86, and 11.35 are shown. Note that the time t in B(r*,t) is the eddy 
turnover time T, . The total velocity (compressible plus solenoidal) are used 
to compute B. 
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FIG. 12. Variation of scalar correlation R with separation distance r for the 
M,=0.5 SV/PS simulation. DNS results are shown in this figure for eddy 
turnover times r, of 0.75, 3, 6, and 9. 

Scalar correlation results obtained from DNS are pre- 
sented in Figs. 12-17. As far as we know there are no data 
with which to compare these results. Figures 12, 14, and 16 
show, respectively, the evolved shape of the scalar correla- 
tion function at times T, approximately equal to 0.75, 3.0, 
6.0, and 9.0 for the cases SVIPS (M,=OS), SVICD 
@4,=0.7), and RVKD (M,=O.7). 

We have adopted a physical-space EDQNM model,16 
which has had some success in describing the evolution of 
low-order scalar moments in three-dimensional, incompress- 
ible, homogeneous turbulence,5 to provide another estimate 
of scalar correlation evolution in these same two- 
dimensional, compressible cases. The adaptation consists en- 
tirely in changing the kernel of the eddy diffusivity, v, , to its 
two-dimensional form, 

r 

FIG. 13. Variation of scalar correlation R with separation distance r for the 
M,?=OS SVLPS simulation. DNS results are compared with results from an 
EDQNM model using total turbulence energy (ET) and solenoidal part of 
turbulence energy (E’). Results in this figure were obtained at T,=5.0. 

Phys. Fluids, Vol. 7, No. 11, November IQ95 Ladeinde et al. 2855 

Copyright ©2001. All Rights Reserved.



E 6 “‘;‘-;. \ <., - 
0.0 

-0.2 Ii,, , . I,, I,. I. 
o 0.2 0.4 0.6 0.8. 1.0 1.2 1.4 1.6 

9- 

FIG. 14. Variation of scalar correlation R with separation distance I for the FIG. 16. Variation of scalar correlation R with separation distance r for the 
M,=0.7 SVKD simulation. DNS results are shown in this figure for eddy M,=0.7 RV/CD simulation. DNS results are shown in this figure for eddy 
turnover times T, of 0.75, 3, 6, and 9. turnover times T, of 0.75, 3, 6, and 9. 

u, = \I;;~oms(k,tjE(k,tj[ l- (~)J,(kr~]~~. 

Here Jt (kr) is the Bessel function of order 1. The definition 
of the other terms in this equation can be found in Jiang and 
O’Brien.17 A finite element code is used to solve the equation 
for the same three cases as were subjected to DNS; compari- 
sons are presented for each case in Figs. 13, 15, and 17. The 
two EDQNM model solutions for each case are a conse 
quence of interpretingI the energy spectrum as either the 
total energy spectrum Er(k,t) or the incompressible energy 
spectrum E’(k, t). 

The original model was developed for incompressible 
turbulence in which Er( k, t) and E’( k, t) are identical. There 
is no evidence to support the notion that scalar transport by 
compressible modes follows the EDQNM model, but there is 
speculation that these modes are relatively ineffective at sca- 
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lar transport, l4 an idea consistent with the observation’9 that 
compressible modes tend to dominate at the high wave num- 
ber end of the spectrum. On the other hand, if the compress- 
ible modes are effective scalar transporters, it is likely that 
the EDQNM model will be an unsatisfactory representation 
of the phenomenon, since the mechanisms of transport must 
be quite different from those of the solenoidal components 
and an EDQ,NM closure is potentially nonrealizable in the 
presence of wave phenomenon.” The two EDQNM solu- 
tions for each case in Figs. 13, 15, and 17 represent an ex- 
ploration of this issue. In each case, except for the large r 
region of the correlation in Fig. 17, the use of E’(k,t) gives 
results cIoser to those from DNS. 

The reader should note the nonmonotonic temporal be- 
havior in R(r,t) in Figs. 12-17. For example, for SV/PS 
(Fig. 12), R(0.8,t) has the approximate values 0.37, 0.22, 
0.2, and 0.48 for t =0.75, 3, 6, and 9. This may be a conse- 

0.8 

0.6 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 
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FIG. 15. Variation of scalar correlation R with separation distance r for the FIG. 17. Variation of scalar correlation R with separation distance r for the 
M,=0.7 W/CD simulation. DNS results are compared with results from an M,=0.7 RV/CD simulation. DNS results are compared with results from an 
EDQNM model using total turbulence energy (I?*) and solenoidal part of EDQNM model using total turbulence energy (Er) and solenoidal part of 
turbulence energy (II’). Results in this figure were obtained at T,==S.O. turbulence energy (E'). Results in this figure were obtained at T,=5.0. 

2858 Phys. Fluids, Vol. 7, No. 11, November 1995 Ladeinde et al. 

Copyright ©2001. All Rights Reserved.



quence of the oscillatory behavior discussed earlier in this 
section. Finally, because these computations are two dimen- 
sional and compressible, a situation in which this EDQNM 
model is untested, one must be cautious about drawing deti- 
nite conclusions from them. 
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