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An asymptotic self-similar solution is obtained for the one-point probability density function ~pdf!
equation, of a passive scalar with uniform mean gradient in incompressible homogeneous
turbulence. It is argued that the same solution should be avalid approximation when turbulence is
generated in a high-quality wind tunnel. The asymptotic pdf shape is a unique function of the
conditional expectation of the normalized scalar dissipation rate. Themean scalar gradient modifies
thescalar pdf shapeonly if theconditional expected velocity component in thedirection of themean
gradient is a nonlinear function of scalar fluctuation value. Experimental data from wind tunnel
studies are consistent with the sign and scale of the changes produced by these nonlinearities.
© 1996 American Institute of Physics. @S1070-6631~96!01209-3#

A long-standing idealized problem in homogeneous tur-
bulent transport of a dynamically passive scalar quantity is
the case in which, in an unbounded domain, a uniform mean
scalar gradient of the scalar is imposed initially in adirection
perpendicular to the constant unidirectional mean velocity of
the flow. The pedigree of this problem includes the original
work of Corrsin,1 who showed, analytically, that the mean
scalar gradient remains constant as the scalar fluctuations
develop and the scalar fluctuations are statistically homoge-
neous in planes orthogonal to themean velocity. Subsequent
experimental investigations in wind tunnels,2,3 with the uni-
formmean scalar gradient generated by heating devicesat an
upstream location, have shown that Corrsin’s predictions ap-
ply with good accuracy in the centerline region of the wind
tunnel.

There is awell-known solution4 for the asymptotic form
of the pdf of the scalar field in the case when the imposed
mean scalar gradient is zero. For the scalar normalized by its
root mean square value,wrms, its pdf is described by a single
parameter, say x, the expected value of the mean square
scalar gradient conditioned on the scalar value. In this paper
we obtain the corresponding asymptotic form of the scalar
pdf when the mean scalar gradient is nonzero. It wil l be
shown that this solution, which is exact when both the tur-
bulence and scalar fields are statistically homogeneous, is
described, in general, by x and a second parameter,Fv ,
which is the expected value of the component of turbulent
velocity in the direction of the mean scalar gradient condi-
tioned by the scalar value. HereFv plays arole only if it is a
nonlinear function of scalar value.

We argue, from experimental evidence, that the same
solution is avalid asymptotic approximation for the case of
wind-tunnel turbulencewhen themean scalar gradient is uni-
form, and that measured small nonlinear components of Fv
are consistent with observations of the scalar skewness and
flatness factors in wind-tunnel experiments.

Eswaran and Pope5 found, in their numerical simulations
of a passive scalar,w, advected by a stationary homogeneous
turbulence, that the probability distribution for the normal-
ized scalar,w85w/wrms, arrived at an asymptotic distribution

independent of the initial conditions. This result motivated
Sinai and Yakhot4 to search for the limiting probability dis-
tribution of a scalar, without mean gradient, in a random
velocity field. Noting that there could beno limiting state for
the time-evolving pdf of a non-normalized scalar, they ob-
tained a pdf equation for the normalized scalar and showed
that the limiting pdf is aunique function of the conditional
expectation of the normalized scalar dissipation rate x~F!,
where F is a value of the random variablew8. Jayesh and
Warhaft3 found, with some surprise, that the theory’s predic-
tion for the zero mean case fit very well their wind-tunnel
experimental results for a scalar field with amean gradient.
This result suggests that the mean gradient,b, has no direct
effect on the shape of the pdf.

The transport equation of a passive scalar with mean
gradientb is6
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wherew is the scalar concentration fluctuation,U is the mean
velocity ~in the x direction!, v is the fluctuating velocity and
v is the component of v in the y direction, which is the
direction of the uniform mean scalar gradient, and D is mo-
lecular diffusivity assumed to be constant. Yakhot7 consid-
ered the limiting probability distribution of w in the context
of high Rayleigh number Bénard convection. His solution
suggested that an exponential distribution of w, at smallw, is
a consequence of the plume-like structure of the velocity
field of the Bénard problem at a high enough Rayleigh num-
ber. Our contribution deals with the possible effects of the
mean gradient and the conditioned normalized velocity in
wind-tunnel turbulence.

From ~1!,
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where we have omitted from the bracketed terms on the
right-hand side of ~2! a molecular diffusion term,
(D/2)¹2w rms

2 , which is zero in homogeneous fields and, in
grid turbulence, is negligible3 compared to the dissipation
term D^(“w)2&. Angular brackets denote an ensemble aver-
age.

Combining ~1! and ~2! and using the following defini-
tions:¬ v85v/urms, w85w/wrms, b85burms/wrms,
e85^D~“w/wrms!

2&, andr5^v8w8&, whereurms is the turbu-
lent velocity scale, we find
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Following the procedure of O’Brien8 and Pope,9 the
equation for the pdf, P(F;x,t), can be written as

]P

]t
1U

]P

]x
1“–~FP!2

]

]F F S F• “w rms

wrms
2
“–^vw2&
2w rms

2¬ DFPG
2D ¹2P52

]2

]F2 FD K S “w

w rms
D 2Uw85F L PG

1
]

]F
@b8FvP2~e81b8r!FP#, ~4!

where¬ F5^vuw85F&, D^~“w/wrms!
2uw85F&, and

Fv5^v8uw85F& are, respectively, the expected velocity
fluctuation vector, scalar dissipation, and y-component nor-
malized velocity fluctuation, all conditioned on the value of
the normalized scalar fluctuation, F.

When the turbulence and scalar fluctuations are statisti-
cally homogeneous, it can be seen that all terms on the left-
hand side of Eq. ~4! are identically zero, except ]P/]t,
which is asymptotically zero in the limi t of large times if a
limi t solution, P(F), exists. This is the same condition as-
serted by Sinai and Yakhot.4 Only the terms on the right-
hand side of ~4! remain for the limiting solution. An exact
solution is easily obtained for this case, but we postpone
presenting it until the case of decaying turbulence in awind
tunnel is examined. The inhomogeneities in the streamwise
direction then add somecomplexity to solving Eq. ~4!. How-
ever, an approximate solution, which has the same form as
the exact solution in the statistically homogeneous case, can
beargued from experimental evidence. Namely, the termson
the left-hand side of Eq. ~4! are effectively negligible com-
pared to the terms on the right-hand side of ~4!. A brief
analysis of the terms on the left-hand side of ~4! follows.

The first term on the left-hand side of ~4! is zero since
wind-tunnel turbulence is stationary. Experiments in wind
tunnels2,3 have shown,6 as expected, that the third term on
the left-hand side of ~4!, turbulent transport of probability,
and the last term on the left-hand side of ~4!, molecular dif-
fusion of probability, are both negligible compared to the
production and dissipation terms on the right-hand side of
~4!. Similarly, experiments10 haveshown that “•^vw2&/2wrms

2 ,
the turbulent transport of ^w2&, is negligible compared to e8,
the rate of dissipation of ^w2&, which means that the second

part of the fourth term on the left-hand side of ~4! is also
negligible. Thefirst part of the fourth term can beassessed as
follows.¬ We¬ note¬ that,¬ in¬ wind-tunnel¬ turbulence,
F–“wrms/wrms5^uuw85F&•]wrms/wrms ]x, where u is the x
component of the fluctuating velocity. It can be compared to
the last term in ~4!. That is,

^uuw85F&•]w rms/wrms ]x

e8
;sS ^uuw85F&

urms
D . ~5!

Thus, considering that the unconditioned, fluctuating veloc-
ity is identically zero and the dependence of its conditioned
streamwise component on F is negligible, if not zero, we
argue that the first part of the fourth term on the left-hand
side of ~4! can safely be neglected. Furthermore, the mea-
sured asymptotic behavior of normalized scalar skewness
and kurtosis,3 which approach constants, suggested that the
second term on left-hand side of ~4!, U(]P/]x), is also ef-
fectively negligible compared to the production and dissipa-
tion terms in wind-tunnel turbulence as distance from the
grid becomes large and the limiting shape of P becomes
independent of x.

Thus, the exact statistically homogeneous case, and the
approximate wind-tunnel representation, both satisfy the
same equation ~4!, with the left-hand side equal to zero. On
integrating ~4!, and assuming both P(F) and]p/]F decay
rapidly enough as uFu→` to set the constant of integration to
zero, we find

]
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where

x5
^D~“w!2uw85F&

^D~“w!2&

is the normalized conditional dissipation.
The solution of ~6! is

P~F!5
c

x
expS 2E

2`

F F

x
dF D

•expS 2E
2`

F b8~rF2Fv!

e8x
dF D . ~7!

As we noted above, ~7! is alimiting solution in the sense of
Sinai and Yakhot4 if both the velocity and scalar fluctuating
fields are statistically homogeneous. In the zero mean gradi-
ent case,b850, P(F) is determined byx alone and~7!
reduces to the solution obtained by Sinai and Yakhot.4 Even
if b8 is nonzero,~7! becomes independent ofb8 if Fv is
linear in F, say Fv5aF. This follows from the requirement
that

E
2`

1`

FFv~F!P~F!dF5r,

when a5r andFv5rF. One situation in which this must
occur is when v8 andw8 are jointly Gaussian.

Evidence from experimental data2 taken in wind-tunnel
grid turbulence shows that Fv , while nearly a linear function
of F in a uniform mean gradient, is not precisely so. Its
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dependence on F is obviously related to the statistical nature
of the turbulence that carries thescalar, and to the initial state
of the scalar field. There is evidence of both a small qua-
dratic and asmall cubic dependence on F. The latter affects
the flatness factor, the former affects the skewness. Because
both are small effectswe treat them separately in the follow-
ing analysis. They cannot negate each other.

Venkataramani and Chevray2 measured Fv in grid gen-
erated turbulence. There is evidence in their results that Fv
has acomponent with acubic dependence on F ~Ref. 2, Fig.
15!. We estimate the cubic coefficient to be negative and
approximately 1% of the linear coefficient. That is,

Fv5a~F1bF3!, ~8!

where b;20.01.
In this case,

r5^v8w8&5E Fvw8P~w8!dw85a~11bk!,

where k is the kurtosis of F ~k53 for a Gaussian distribu-
tion and 6 for an exponential distribution!. Hence

Fv5
rF

11bk
~11bF2!, ~9!

and the second exponential factor in ~7! becomes

expS 2
A

4
F41

kA

2
F2D , ~10!

where A52(b8/e8x)r[b/(11bk)]. For b small,A is lin-
ear in b and itsmagnitude is approximately ubu sinceb8r/e8x
is of order unity due to the approximate balance of produc-
tion and dissipation of scalar fluctuations in the flow. For a
moderate value of F the factor ~10! can then be approxi-
mated by 11 1

4ubu(F422kF2), which is greater than unity
when uFu . A2k and less than unity around the origin of F.
Consequently, a small increase in flatness factor can be ex-
pected when the conditioned expected velocity in the direc-
tion of the mean gradient has acubic dependence on scalar
fluctuating value, with a negative coefficient.

A dominant factor in determining the flatness factor of
P(F) is likely to bex, which, if the small-scale structure of
the scalar field is isotropic, is necessary symmetric in F and
modifies P(F) symmetrically. On the other hand, experi-
mental data ~Ref. 3, Fig. 11! support a slightly positively
skewed probability density function P(F) under a uniform
mean scalar gradient, while at the same time x is symmetri-
cally distributed for small F. Other wind-tunnel data,2 with-
out measurement of x, shows the same asymmetry. A qua-
dratic dependence of Fv on F can produce asymmetry in
P(F), and measured data2,3 support the prescription

Fv5a~F1cF2!, ~11!

where c;20.01 has been estimated from the experiments
mentioned above.

Proceeding as before, we find

Fv5rF~11cF!~11cs!21,

where s is the skewness of P(F), which is approximately
s50.1. In this case ~10! becomes

expS 2
B

3
F31

sB

2
F2D , ~12!

where B5(b8/e8x)r[c/(11cs)], and ~12! can be approxi-
mated, for small c and s and moderate uFu, by

11ucuS F3

3
2
sF2

2 D .
When F is negative, P(F) is reduced by this factor and,
when F is positive and > 3

2s, P(F) is enhanced. A small
positive skewness can be expected when the conditioned ex-
pected velocity in the direction of the mean scalar gradient
has a quadratic dependence on the scalar fluctuation value,
with a negative coefficient.

In conclusion, we assert that there is an asymptotic so-
lution ~7! for the pdf of a scalar in homogeneous turbulence,
which includes the case of a uniform mean scalar gradient.
However, the scalar pdf is independent of themean gradient
if the expected value of the velocity component in the direc-
tion of the mean gradient, when conditioned on the scalar
fluctuation value, is a linear function of such a value. Mea-
surements in wind-tunnel flows with auniform scalar gradi-
ent show evidence that the conditioned velocity has small
quadratic and cubic nonlinearity components with respect to
scalar fluctuation value. We have shown that the sign and
magnitude of the measured changes in the scalar pdf in grid
turbulence, with uniform scalar gradient, is consistent with
solution ~7!. The derivation of ~7! shows it to be aplausible
solution for grid turbulence generated in awind tunnel.
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