
PHYSICS OF FLUIDS VOLUME 10, NUMBER 9 SEPTEMBER 1998

Down
Advection of mass fraction in forced, homogeneous, compressible
turbulence

X. D. Cai, E. E. O’Brien, and F. Ladeinde
Department of Mechanical Engineering, State University of New York at Stony Brook, Stony Brook,
New York 11794-2300

~Received 14 November 1997; accepted 4 May 1998!

In nearly isothermal, compressible turbulence of a nondense gas the mass fraction of an embedded
passive scalar satisfies the same formal conservation equation as a passive scalar in incompressible
turbulence. Direct numerical simulation of this system shows that the compressible turbulence
modes are less efficient than the incompressible in transporting scalar spectral content from large to
small scales. It is argued that the cause of this outcome is the reduced size of the integral length
scale of the compressible velocity components vis a´ vis that of the incompressible velocity
components, and this also explains the experimentally observed ineffectiveness of the dilatational
velocity modes in determining scalar flux in homogeneous, compressible turbulence with a uniform
mean scalar gradient. ©1998 American Institute of Physics.@S1070-6631~98!00609-6#
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I. INTRODUCTION

From linearized analyses to direct numerical simu
tions, previous studies have demonstrated that the evolu
behavior of compressible turbulence is determined by
turbulent Mach number,Mt , and the initial conditions on
density, pressure and temperature fluctuations.1–3 As a con-
sequence of differentMt and initial conditions, compressibl
turbulence typically changes very rapidly at the initial sta
then arrives, asymptotically, at one of three distinct sta
~a! nearly incompressible, solenoidal flow dominated by v
ticity, ~b! flow characterized by near statistical equilipartitio
of energy in vortical and compressive modes, or~c! nearly
pure acoustic turbulence dominated by dilatational, comp
sive modes. These states are labeled, respectively, as ca
E, and D in this article. The relative fraction of kinetic e
ergy in acoustic modes increases from S to D and a
changes the density and velocity intensity scalings with
bulent Mach number as well as the energy spectral shap1,4

It has also been found that the increase in compressibilit
going from case S through E to D causes a change in
evolution of the Reynolds stresses.5 There is some evidenc
that an increase in compressibility may have only a marg
influence on the efficiency of the turbulence in transport
and mixing of an embedded passive scalar, although
aspect has not received the attention given to the turbule
itself. In the following work we address this issue spec
cally in the case of nearly isothermal, compressible tur
lence.

The transport equation for mass fraction,Y, of a species
embedded in a flow with velocityu(x,t) can be written as

]Y

]t
1u–¹Y52

1

r
¹–~rJ!, ~1!

where J is the scalar flux vector. From Williams,5 if the
molecular weights of the fluid and the scalar species
2241070-6631/98/10(9)/2249/11/$15.00
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equal, if gravity is the only external force, and if the therm
diffusion of the scalar is ignored,J can be described by
Fick’s law,

J52D¹Y, ~2!

whereD is the binary diffusion coefficient of the scalar in th
carrier fluid. Kinetic theory of nondense gases6 can be used
to obtain an approximate expression for the diffusion coe
cient,D.

D53k0T/~16nm12s12v̄12!,

wherek0 is the Boltzman constant,m12 is the reduced mas
of the binary system,n is the number of molecules per un
volume, s12 is the collision cross section for molecules
types 1 and 2 andv̄12 is the average relative velocity o
molecules of types 1 and 2.v̄12 is expected to be propor
tional to the molecular kinetic velocity which is of orde
T1/2, whereT is the temperature. Sincen is proportional tor,
which is of orderP/T, whereP is the pressure, we have th
following approximate scaling relationships with temper
ture:

r;T21; D;T3/2; rD;T1/2.

This suggests that, in compressible turbulence with mod
temperature fluctuations, the simplifying assumption,

rD5const, ~3!

may be more defensible than the more common assump
of a constant diffusion coefficient.

In this study of the effect of compressibility on the tran
port of a scalar we have reduced the complexity of Eq.~1! by
adopting both Eqs.~2! and~3! in order that only two stochas
tic variablesD ~or r! and u determine the evolution ofY.
Then Eq.~1! becomes

]Y

]t
1u–¹Y5D¹2Y. ~4!
9 © 1998 American Institute of Physics
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It should also be noted that, in statistically homogene
circumstances, bothY and its Favre-averaged fluctuation
defined asY95Y2(^rY&/^r&), satisfy Eq.~4! since both
^rY& and ^r& can readily be shown to be constants in spa
and time. The remainder of this article will focus on th
Favre fluctuationY9. It obeys an advection diffusion equa
tion which is formally identical to the often-studied passi
scalar in incompressible turbulence, but differs from it
having both solenoidal and dilatational modes inu, and a
diffusivity which is a random variable.

In this study we extend a previous investigation7 to con-
sider the spectral behavior of Favre-averaged mass frac
fluctuations in three types of forced compressible turbulen
vis á vis its behavior in solenoidal turbulence. The approa
is direct numerical simulation, which is outlined in Sec. I
First we derive an expression for the ratio of scalar flux d
to compressible modes to scalar flux due to soleno
modes.

II. LAGRANGIAN INTEGRAL TIME SCALES IN
HOMOGENEOUS, COMPRESSIBLE TURBULENCE

We consider the motion of a fluid particle in stationar
homogeneous, compressible turbulence by adopting the
grangian procedure of Taylor’s diffusion by continuo
movements.8

If X(a,t) is the position at timet of a particle which was
initially at a andv(a,t) is its velocity, then

Xj~a,t !5aj1E
0

t

v j~a,t!dt.

Because the flow is statistically homogeneous, there exis
generalized Fourier transform ofv, say, ṽ. Adopting
Moyal’s9 decomposition ofv in Fourier space we obtain

vm~a,t !5E exp~2 ik–a!ṽm~k,t !dk, m5S,D,

ṽD~k,t !5k
k–ṽ

uku2
, ṽS~k,t !5 ṽ~k,t !2 ṽD~k,t !,

where superscripts S and D are, respectively, the soleno
and dilatational~compressible! components of the velocity,

v~a,t !5vS~a,t !1vD~a,t !.

ṽS(k,t) and ṽD(p,t) are orthogonal but so arevS(a,t) and
vD(b,t) as the following argument shows,

^vS~a,t!–vD~b,t!&5E ^ṽS~k,t !–ṽD~k,t !&

3exp@2 ik–~a2b!#dk,

where use has been made of the property

^ṽS~k,t !–ṽD~p,t !&5^ṽS~k,t !–ṽD~k,t !&d~k2p!.

But sinceṽS(k,t) and ṽD(k,t) are orthogonal, we have

^vS~a,t!–vD~b,t!&[0. ~5!

By isotropy this result can be written, eschewing t
summation convention throughout this section, as
loaded 09 Nov 2010 to 129.49.23.145. Redistribution subject to AIP licens
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^v j
S~a,t!v j

D~b,t!&50, j 51,2,3.

Hence the asymptotic variance of the displacement of a fl
point can be written

^~Xj2aj !
2&.2t~^~v j

S!2&L j j
S 1^~v j

D!2&L j j
D !,

whereL j j
S andL j j

D are, respectively, the solenoidal and dil
tational Lagrangian integral time scales, defined by

L j j
m5E

0

` ^v j
m~x,t !v j

m~x,t1t!&

^~v j
m!2&

dt, m5S,D.

The relative sizes of Lagrangian integral time scales
be deduced in the case of a uniform mean gradient scala
a flow with scalar fluctuations, which are statistical
homogeneous.10 Writing scalar flux^rvY9& in the direction
of increase of the mean scalar field with constant gradienb,
it follows that

^rvY9&5^rvSY9&1^rvDY9&

52b~^~v j
S!2&L22

S 1^~v j
D!2&L22

D !.

Hence the ratio,r, of dilatational scalar flux to solenoida
scalar flux can be written

r 5
^rvDY9&

^rvSY9&
5

^~v j
D!2&

^~v j
S!2&

L22
D

L22
S .

It is convenient to adopt the kinetic energy parame
x5@^(v j

D)2&/^(v j )
2&#, which is the ratio of kinetic energy

per unit mass in the dilatational modes to the total kine
energy per unit mass, and which is the definition commo
used in the literature.7,11 Then we find,

r 5
x

12x

L22
D

L22
S . ~6!

Numerical simulation of scalar flux in compressible tu
bulence with a uniform mean scalar gradient by Blaisd
et al.,11 showed thatr is negligibly small, even whenx is
finite. Equation~6! implies that the Lagrangian integral tim
scaleL22

D is much smaller than the Lagrangian integral tim
scale,L22

S . We will return to Eq.~6! in Sec. V, where spec
tral computations show that the compressible modes are
efficient than the solenoidal modes in transporting scalar
tensity from low wave number to high wave number regio
of the spectrum. Both these spectral and physical space tr
port results are explained by a shorter integral scale for
compressible modes.

III. NUMERICAL SIMULATION OF FORCED,
COMPRESSIBLE HOMOGENEOUS TURBULENCE

The numerical method used in this article is based on
essentially nonoscillatory~ENO! method developed by Sh
and Osher.12 Details of its application to decaying homog
neous compressible turbulence are available in Ref. 13
will not be repeated here. Since this study invokes transp
of a passive scalar, the turbulent motion can be simula
without reference to the embedded scalar. Details of the
lar field simulations are presented in Sec. IV.
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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To generate approximately stationary, compressible,
mogeneous turbulence fields with zero mean velocity,
have adopted the technique of Kida and Orszag14 whereby an
artificial external force at low wave number is added to
momentum and energy conservation equations. In nondim
sional Eulerian form, the defining equations are

]r

]t
1

]

]xi
~rui !50, ~7!

]

]t
~rui !1

]

]xj
~ruiuj !52

]p

]xi
1

]

]xj
~di j !1rFi , ~8!

]

] l
~reT!1

]

]xj
@~reT1p!uj #

5
]

]xi
S di j uj1

m

~g21!Pr

]T

]xi
D1ruiFi , ~9!

where eT is the nondimensional total energy given b
eT5e1 1

2ujuj , e is the nondimensional internal energy,di j

5m@(]ui /]xj )1(]uj /]xi)2(2/3)(]uk /]xk)d i j # is the de-
viatoric stress tensor and the second coefficient of viscos
m2 , is taken asm252 2

3m. As done by Caiet al.,15 the ve-
locity scale is chosen to beu0* , the speed of sound divide
by the square root of the ratios of specific heats, that is,u0*
5(R* T0* ), whereR* is the specific gas constant andT0* is
the initial mean temperature. Since the mean flow field
homogeneous turbulence has no intrinsic length scale,
choose an arbitrary length scale,L0* , as the reference length
and the time scale isL0* /u0* . The density is scaled by th
initial mean density,r0* , so that r5r* /r0* . For consis-
tency, the temperature,T, pressure,p, and energy per uni
mass are nondimensionalized by, respectively, the in
mean temperature,T0* , the initial mean pressure,p0* , where
p0* 5r0* R* T0* , and the mean square velocityuu0* u2. The vis-
cosity is nondimensionalized asm51/Re05m* /r0* u0* L0* ,
m* is assumed constant andRe0 is the reference Reynold
number. The Prandtl number,Pr5m* Cp* /s* , wheres* is
the thermal conductivity andCp* is the specific heat, is als
constant. In all the above definitions the superscript~* ! de-
notes a dimensional variable. The artificial external for
Fi , has the form

Fi~x,t !5Ai j ~ t !sin~xj !1Bi j ~ t !cos~xj !,

whereA(t)5$Ai j (t)% andB(t)5$Bi j (t)% are Gaussian ran
dom variables with zero means. Each element ofA(t) and
B(t) is assumed to be statistically independent. The diago
and off-diagonal parts ofA(t) and B(t) represent, respec
tively, the compressive and noncompressive parts ofF, or, in
other words, the longitudinal and transverse excitations
the present simulations, the second-order moments of
diagonal and off-diagonal elements are chosen to satisfy

^Ai j
2 ~ t !&5^Bi j

2 ~ t !&5H 2Fc

3Dt
, if i 5 j ,

FR

3Dt
, if iÞ j ,
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whereDt is the time step, whose value and those ofFc and
FR can be found in the first three rows of Table I, where t
Reynolds numberRe05200. As noted by Caiet al.,15 under
the condition of the low Reynolds numberRe05200 with
643 mesh, the ENO scheme can resolve the spectrum in
wave number rangek<20, which includes the energeti
modes of principal interest in the study of advection.
643 mesh is adopted in these three-dimensional~3D! simula-
tions of spectral evolution from initial scalar spectra in whi
intensity is concentrated in low wave number modes.

Through the use of this scheme we have successf
produced three distinct types of approximately stationa
homogeneous, compressible turbulence which are labele
Table I as solenoidal, S, equipartition, E, and dilatational,
The identifying letter indicates the relative energy content
the solenoidal and dilatational modes. For example, E in
cates approximate equipartition in energy between the
modal types. S and D denote, respectively, almost enti
solenoidal and almost entirely dilatational modes.

In the remaining rows of Table I, the obtained values
important flow parameters, averaged over the computatio
temporal-spatial domain, are presented for each of the th
types of turbulence. They are defined as follows: total kine
energy,qt5

1
2^uiui&; turbulent Mach number,Mt5urms/c;

Taylor microscale,l5(e/5murms
2 )21/2; Taylor microscale

Reynolds number,Rl5(5/3me)1/2^r&^uiui&; Kolmogorov
length scale,h5@(m3/e)1/4/^r&1/2#; ratio of kinetic energy in
compressible modes to total kinetic energy,x
5^ui

Dui
D&/^uiui&; density relative intensity,I r5r rms8 /^r&.

In this definition e5m@4/3̂ (]ui /]xi)
2&1^v2&#,

urms5^uiui&
1/2, and c is the average sound speed:c

5^(gRT)1/2&.
The parameters in Table I have been purposely chose

produce the three types of turbulence S, E and D, in orde
display a wide diversity in kinetic energy ratio,x, which by
definition satisfies 0<x<1. Simultaneously, they displa
approximately equal values of total kinetic energy,qt , tur-
bulent Mach number,Mt , and Reynolds number,Rl . An
increase in the ratio of energy content in compressi
modes,x, corresponds to an increase in the relative intens
of density fluctuations,I r .

The purpose of generating a compressible turbule
which is approximately statistically stationary is to simpli

TABLE I. Forcing scheme and flow parameters.

Case S E D

Dt 0.02 0.02 0.01

1

3Dt
FR A1/34

1

7
0

2

3Dt
Fc

0 A1/5 A3/4

qt 0.0972 0.113 0.113
Mt 0.340 0.371 0.404
l 1.244 1.186 1.148
Rl 53.5 58.3 58.4
h 0.0860 0.0792 0.0779
x 0.0111 0.587 0.990
I r 0.0498 0.259 0.359
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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and clarify the role of compressibility in transporting an e
bedded passive scalar. Since transport by all scales of c
pressible turbulence, large and small, is expected to be
nificant, the dynamics of a decaying turbulence wou
unavoidably complicate the kinematics of scalar evoluti
except, perhaps, if, at large Reynolds number, a statistic
stationary regime of the turbulence were to develop at v
small scales, and we were interested only in the scalar p
erties at those scales. We have neither the high Reyn
number computational capability nor an interest confined
the small scales of the scalar field. Therefore we have
tempted to produce stationary, compressible turbulence
duced by a driving force at the largest scales, and we ex
ine the spectral evolution of the scalar from distributio
which initially have intensity predominantly in the low wav
number regime. The nature of the driving force will clear
play a role in the details of scalar spectral evolution. As
show in Sec. IV, there is a stark difference between the c
puted results for the evolution of the scalar spectrum by
lenoidal velocity modes and those by dilatational modes,
sults large enough to justify, we believe, some gene
conclusions about the role of compressibility in passive s
lar transport. An alternative approach would be to gene
random compressible velocity fields, independent of
equations of motion, by manipulation of random numb
generation, but that appears to be even less closely relat
Navier–Stokes homogeneous turbulence, itself a somew
artificial construct.

While it is desirable to obtain a statistically stationar
turbulent velocity, it is impossible to judge precisely if a tim
series is statistically stationary unless it is known over la
~technically, infinite! periods. It is also impossible to know
definitely when an initially evolving quantity becomes stat
tically stationary. Thus, the judgment of stationarity is som
what subjective and uncertain. The concerns about this
certainty of judgment depend on how seriously the res
depend on the stationarity. In our case, studies are focu
on a qualitative assessment of the compressibility effects
scalar transport due to various compressible turbulent fi
with decidedly different kinetic energy ratios, but witho
rapidly changing velocity statistics. For our purpose a loos
more subjective judgment suffices to indicate approxima
statistical stationarity.

Figure 1 shows the simulation results for the evoluti
of kinetic energy in the S, E, and D cases. As the flow fi
is excited by the random force at the largest scales, kin
energy grows from an initially zero value until it reaches
stable mean value~listed in Table I!, when the smallest-scal
motions reach statistical equilibrium under the effects of
vection and viscous dissipation. The oscillatory phenom
shown in Fig. 1 are a consequence of the Gaussian ran
force introduced at the largest scales.14 Figures 2, 3, and 4
show the evolutions of another two important parameters,
Kolmogorov length scale~h! and the Taylor length scale~l!,
for each type of turbulence. In contrast to the strong osci
tory behavior observed in the evolution of kinetic energy,
oscillations of the Kolmogorov length scale are mu
smaller due to the strong smoothing effects of molecu
viscosity. Loosely speaking, statistical quasiequilibrium
loaded 09 Nov 2010 to 129.49.23.145. Redistribution subject to AIP licens
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observed for the S case aftert.110, for the E case aftert
.40, and for the D case aftert.15. In a quasiequilibrium
state, the statistical quantities of small scale, such as the
sipation rate and Kolmogorov length scale, are relativ
smooth with variance smaller than 1% while large scale s
tistical quantities, such asqt , Mt , andRl ~not shown! show
quasiperiodic behaviors with variances around 10%. Figu
shows the spectral distribution of compressible and sole
dal energy in the quasistationary state for each of the th
types of turbulence. In order to simulate a passive sc
embedded in each of the three types of compressible tu
lence, the scalar field is turned on at a point when the ve

FIG. 1. Evolution of kinetic energy in cases~a! S, ~b! E, and~c! D.
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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FIG. 2. Evolution of characteristic parameters in case S:~a! Kolmogorov length scale~h! and ~b! Taylor length scale~l!.

FIG. 3. Evolution of characteristic parameters in case E:~a! Kolmogorov length scale~h! and ~b! Taylor length scale~l!.

FIG. 4. Evolution of characteristic parameters in case D:~a! Kolmogorov length scale~h! and ~b! Taylor length scale~l!.
loaded 09 Nov 2010 to 129.49.23.145. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions
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ity field is quasistationary, and starts fromt5131.9– 139.5
for the S case, fromt550.8– 61.2 for the E case, and fro
t516.9– 24.4 for the D case. The flow parameter values
Table I are temporal-spatial averages starting from the in
tion of the scalar field at these times.

IV. NUMERICAL SIMULATION OF THE PASSIVE
SCALAR

Initial conditions for scalarY9(x,0) are generated from
random variablec~k,0!, in Fourier space, of the form

c~k,0!5EY9~k,0!exp@2p iu~k!#,

where u~k! is a uniformly distributed random number b
tween 0 and 1,k5iki , andEY9(k,0) is a prescribed term. To
ensure thatY9(x, 0) is real when transformed to the physic
space, we set

c~2k,0!5c* ~k,0!,

wherec* is the complex conjugate ofc. Finally, we trans-
form c~k,0! into physical space and normalize all nodal v
ues ofY9 by their root mean square~rms! value.

To generate a scalar field with specific initial propertie
a more refined method can be used to modify the ab
procedure. For example, to generate a scalar field w
double-delta probability distribution, three steps are take16

FIG. 5. Time-averaged stationary kinetic energy spectra:~a! dilatational
energy spectra,ED(k) and ~b! solenoidal energy spectra,ES(k).
loaded 09 Nov 2010 to 129.49.23.145. Redistribution subject to AIP licens
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~a! First, the above procedure is used to generate a ran
scalar field in Fourier space.

~b! Next, the scalar field is transformed into physic
space. In physical space, the scalar value at each n
is reset to 1 if it is positive, and to21 if it is negative.
This operation yields the desired double-delta distrib
tion but also causes the scalar value to change abru
between adjacent nodes, thereby producing signific
high-wave number components in the scalar fie
which are poorly resolved in the simulations.

~c! Finally, the scalar field is retransformed into Fouri
space. The Fourier amplitudes of the scalar are mu
plied by a filter function,F(k), defined by

F~k!5H1 k<kc

~k/kc! k.kc

wherekc is a specified cutoff wave number. This fi
tering operation removes many of the poorly resolv
high-wave number components of the scalar fields.

Two distinct initial scalar spectra have been used in t
study. The initial scalar spectrum for the first case, labe
S1, is

EY9~k,0!; H exp@20.1~kx
21ky

21kz
2!# k<3.0,

0 k.3.0,

and, for the second case, S2,

EY9~k,0!;H 1

k2
k<1.

0 k.1.

The treatment of random numbers is different in the t
cases. In the S1 case numbers are generated by the firs
cedure described above, while S2 numbers are generate
ing the second procedure in which the cutoff wave numb
kc , in the filter function is 2. Because of this difference
their generation procedure S1 and S2 have different in
probability distributions. S1 has a near-Gaussian distribut
and S2 has almost a double-delta distribution.

There is evidence from numerical simulations of inco
pressible turbulence that scalar evolution is less sensitiv
the initial spectral shape of the scalar17 than to the ratio of
initial integral length scales of the scalar and t
turbulence.16 Thus, it is anticipated that there will be differ
ences in the subsequent evolutions of the scalar spectr
cases S1 and S2, especially at small times, and these
mostly be due to the differences in the initial scalar/veloc
integral length scale ratios.

In Table II, the initial length scales of the scalar and t

TABLE II. Initial integral scales.

Case S/S1 E/S1 D/S1 S/S2 E/S2 D/S

( l )0 2.04 1.94 1.71 2.04 1.94 1.71
( l Y9)0 0.426 0.426 0.426 0.741 0.741 0.74

SlY9
l D

0

0.209 0.220 0.249 0.363 0.382 0.43
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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velocity, and their ratios, are given for each type of turb
lence S, E, and D and for both types of initial scalar spec
S1 and S2.

The initial velocity integral length scale, (l )0 , is defined
by

~ l !05
3p

4

*0
`k21ES~k,0!dk

*0
`ES~k,0!dk

,

where ES(k,t) is the energy spectrum of the solenoid
modes of the turbulence, and (l Y9)0 the scalar integral length
scale is given by

~ l Y9!05
p*0

`k21EY9~k,0!dk

4*0
`EY9~k,0!dk

,

whereEY9(k,t) is the spectrum of scalar intensity.
In the definition of (l )0 , the initial energy spectrum o

the incompressible modes,ES(k,0), is preferred to the tota
energy spectrumE(k,0), because it is in incompressible tu
bulence that the phenomenon of the effect of integral len
scale ratio on scalar evolution was established,16 and the con-
stant 3p/4 with definition of (l )0 is obtained for solenoida
flows. However, ifES(k,0) is replaced byE(k,0), the values
of ( l )0 in Table II are altered by less than 10%. Furthermo
as the results in Sec. V will show, the integral length sc
for the compressible velocity modes is much smaller than
integral length scale of the solenoidal modes and is, th
fore, likely to be less effective in determining the behavior
scalar evolution.16

V. SCALAR FIELD SIMULATION RESULTS

The evolution of scalar variance is presented in Fig
for the S1 cases of scalar transport~the time unit used here
and later on is the eddy-turnover time based on Taylor sc
l/urms!. The initial scalar spectrum for these cases is p
vided in Fig. 7~a!, and has scalar intensity compacted in t
large scales. It can be seen from Fig. 6 that the decay ra
scalar variance in the S/S1 case differs sharply from the
cay rate in the D/S1 case, which, we speculate, is a co
quence of a difference in the nature of the interaction of

FIG. 6. Evolution of scalar variance in S/S1, E/S1, and D/S1 cases.Te is
eddy-turnover time.
loaded 09 Nov 2010 to 129.49.23.145. Redistribution subject to AIP licens
-
a,

l

th

,
e
e
e-
f

6

le,
-

of
e-
e-
e

solenoidal and dilatational velocity modes with the sca
fluctuations. Dilatational modes are dominant in the D/
case, which suggests that the much slower decrease of s
variance in this case is due to a slower spectral transpo
the more dissipative higher wave numbers by the dilatatio
modes. Simultaneously the S/S1 case shows the most r
decrease in scalar variance, or, equivalently, the most ra
spectral transport of scalar intensity to the smaller scales.
the other hand, the distinction between results for the S
and E/S1 cases is very small. However, we note that the E
case has a solenoidal energy spectrum similar to that of
S/S1 case, although the dilatational spectra differ sha
~see Fig. 5!. If the dilatational modes are less effective
scalar spectral transport than the solenoidal modes,
would also explain the S/S1 and E/S1 results. The same
havior of the scalar variances has been reproduced in th
cases18 ~not shown!.

This interpretation is also supported by simulations
scalar variance spectral evolution in cases S/S1, E/S1
D/S1 ~Fig. 7!, which begin with the same initial scalar var
ance spectrum but with distinctly different velocity field
~see Fig. 5!. In all of the S1 cases it can be seen that t
high-wave number scalar variations begin from states of n
ligible energy and, in general, after one eddy-turnover tim
appear approximately steady as a consequence of turb
distortion and an increase of scalar gradient which take p
much more quickly than the overall decay of the sca
field.15 At the same time, the phenomenon of higher spec
intensity levels in the S/S1 case than in the D/S1 case at
wave numbers~larger thank54 in this case!, and the reverse
at the smallest wave numbers, implies a faster spectral tr
fer in S/S1 than in D/S1. The same behavior of scalar v
ance spectra has also been observed for the S/S2, E/S2
D/S2 cases~Fig. 8!. It is noted that all the S2 cases have t
same initial scalar variance spectrum, which differs sign
cantly from that of the S1 cases. Returning to Fig. 5, it c
be seen that, even though the total kinetic energy is alm
the same, the incompressible energy spectra,ES(k), and
compressible energy spectra,ED(k), are at quite different
levels, except for the solenoidal spectra,ES(k), of S and E
type turbulence, and the dilatational spectra,ED(k), of E and
D type turbulence. The dilatational strain rate,@k3ES(k)#1/2,
dominates in D cases while the solenoidal strain ra
@k3ES(k)#1/2, dominates in S cases. This difference in t
mode of velocity strain rate gives rise to a difference in t
development of the scalar variance spectra~Figs. 7 and 8!. In
Fig. 9 the spectra of scalar gradient for both S1 and S2 ca
are displayed. They also show a similar behavior where
the D cases appear to be less efficient than the S case
developing the small scale structure of the mass frac
field.

It is worthwhile here to examine directly the advectiv
effects of dilatational and solenoidal velocity modes on s
lar gradient. As illustrated in the work of Corrsin,19

Obukhoff,20 and Batchelor,21 the development of the scala
variance spectrum is determined by the action of the tur
lent motion on the scalar distribution by introducing a co
tinual reduction of the length scale of scalar variations. D
ing this process, the random convection of material eleme
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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FIG. 7. Development of scalar variance spectra in S1 cases:~a! Te50, ~b! Te51.0, ~c! Te52.0, and~d! Te52.5. Te is eddy-turnover time.
se
e
h
si
ow
-

a

g

of the fluid is inevitably accompanied by distortion of the
elements and an~statistical! increase in the gradients of th
scalar in the absence of molecular conduction. This mec
nism can be illustrated by a simple rapid distortion analy
of the development of scalar gradient in a compressible fl

Using Eq.~4!, we obtain the following equation for sca
lar gradient:

d

dt S ]Y9

]xi
D52

]uj

]xi

]Y9

]xj
1D

]2

]xk]xk
S ]Y9

]xi
D

1
]D

]xk

]2Y9

]xk]xk
.

If the molecular diffusion terms are ignored, the mean squ
scalar gradient satisfies

d

dt S ]Y9

]xi
D 2

522
]uj

]xi

]Y9

]xj

]Y9

]xi
,

where the summation convention is not used. That is,i 51, 2,
or 3.

In a principal axis reference frame, with the followin
simplified strain rate assumptions,
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]u1
l

]x1
5s~ t !52

]u2
l

]x2
,

]v3
l

]x3
50,

]u1
C

]x1
5

]u2
C

]x2
5

]u3
C

]x3
5

1

3
d~ t !,

]ui
l

]xj
[0, iÞ j ,

we find

d

dt S ]Y9

]x1
D 2

52S 2s2
1

3
dD S ]Y9

]x1
D 2

,

d

dt S ]Y9

]x2
D 2

52S s2
1

3
dD S ]Y9

]x2
D 2

,

d

dt S ]Y9

]x3
D 2

52
2

3
dS ]Y9

]x3
D 2

.

On integrating these equations one finds,
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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FIG. 8. Development of scalar variance spectra in S2 cases:~a! Te50, ~b! Te51.0, ~c! Te52.0, ~d! Te52.5. Te is eddy-turnover time.
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~¹Y9!25~¹Y9!0
2S 2 coshE

0

t

2s~t!dt11D
3expS 2

2

3 E
0

t

d~t!dt D , ~10!

where (¹Y9)0
2 is the initial value of (¹Y9)2.

Clearly the dissipation rate of the scalar,eY9 , is affected
differently by the irrotational strain rates(t) and the dilata-
tional strain rated(t), although both play a role in its evo
lution. In particular, while the sign ofd(t) in Eq. ~10! is
relevant, the sign ofs(t) is not. From the analysis of Sarka
et al.,22 d(t) is expected to have a pseudoperiodic behav
similar to that of the dilatational velocityuD, and its time
scale to be of the order of the integral time scale of
compressible velocity, and, therefore, to be much sho
than the corresponding integral time scale of the soleno
velocity, as implied by Eq.~6! which will be revisited in the
next paragraph. In such a case,d(t) oscillates rapidly com-
pared to rates of change ofs(t) and, therefore, the exponen
tial term in Eq.~10!, which is dependent ond(t), is expected
to be less effective in developing (¹Y9)2 thans(t) is. There
is no claim here that dilatational strain rate has a neglig
effects on scalar dissipation, merely that the solenoidal
loaded 09 Nov 2010 to 129.49.23.145. Redistribution subject to AIP licens
r
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locity component is more efficient in the production of sca
gradient by the velocity field stretching mechanisms. T
numerical results, displayed in Figs. 6–8 for the evolution
scalar variance and its spectra, and in Fig. 9 for the evolu
of scalar gradient spectra, are consistent with this sim
rapid distortion model. Figure 10 shows the variance of s
lar gradient in the S1 cases as a function of time. T
asymptotic crossover of the D/S1 case is easily traced to
slower decrease of scalar gradient intensity in the low w
number regions of the spectra presented in Fig. 9.

We return now to Eq.~6! and the ineffectiveness of di
latational modes in transporting a scalar in physical spa
which was observed by Blaisdellet al.11 in a numerical study
of scalar flux with a uniform mean scalar gradient in hom
geneous, compressible turbulence. They showed that
contribution from dilatational velocity to the scalar flux ter
is small compared to the contribution from solenoidal velo
ity, even when the fraction of kinetic energy in the compre
ible mode,x, is large. From Eq.~6!, and noting that our
expression for scalar flux̂rvY9& in this simple configura-
tion is equal to theirs, it can be concluded that their obs
vation implies that the Lagrangian integral time scale of
solenoidal velocity must be larger than that of the dilatatio
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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velocity. From our simulation of case E, a time-averag
ratio of Lagrangian integral time scale of dilatational velo
ity to solenoidal velocity is estimated to be 0.079, accord
to Eq. ~6!, if a sliding-averaged scalar flux calculation
used.

In Fig. 11 we display the spatial distribution of the E
lerian velocity correlation in the E case for both the solen
dal and dilatational modes. The Eulerian integral length sc

FIG. 9. Spectra of scalar gradients atTe52.0: ~a! S1 cases and~b! S2 cases.

FIG. 10. Evolution of mean square scalar gradient,^(]Y9/]xi)(]Y9/]xi)&,
in S/S1, E/S1, and D/S1 cases.Te is eddy-turnover time.
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is clearly much larger for the solenoidal modes. The tim
scales of Eq.~6! can be connected to the more accessi
Eulerian length scale by assuming an approximate equa
of Lagrangian and Eulerian velocity time correlations in lo
Reynolds number flow, as suggested by Burgers and
posed by Corrsin.23 That is,

^v j
m@X~a,t !,t#v j

m@X~a,t !,t1t#&

'^uj
m~x,t !uj

m~x,t1t!&, m5S,D.

In a homogeneous, compressible flow confined in a bo24

^v j
2&5^uj

2&. If an additional assumption, such as Taylor
approximation of frozen flow, is used with^u0&
5A(r0 /r0), the Eulerian velocity spatial correlation can d
termine the Lagrangian integral time scale. Since Fig.
clearly shows that the Eulerian integral length scale of d
tational velocity is much smaller than the solenoidal veloc
integral length scale in the E case, and similar behavio
observed in all computed cases, the explanation for the r
tive weak scalar transport by dilatational modes, observed
Blaisdell et al.,11 lies with the small value of their Lagrang
ian integral time scale.

VI. CONCLUSIONS

Three-dimensional simulations of a dynamically pass
mass fraction, transported by three cases of homogene
compressible turbulence, each with distinctly different lev
of compressible energy content, have been carried out in
3D numerical study. In situations of small temperature flu
tuation the mixture fraction obeys the classic passive sc
advection-diffusion equation, except that the velocity fie
has both dilatational and solenoidal modes and the diffu
ity is a random variable. The focus of this work is on th
advective effects of the dilatational modes, which are sho
to be much less effective than the solenoidal modes in tra
porting the scalar field variance content from large scale
small scale regions of its spectrum. The cause is traced
large discrepancy between the sizes of the respective inte
length scale for the dilatational and solenoidal modes.

FIG. 11. Eulerian velocity correlation in case E:~– – –! solenoidal velocity
correlation and~—! dilatational velocity correlation.
e or copyright; see http://pof.aip.org/about/rights_and_permissions



ha
n

ow
u
la
he
t i
m

f
le
e
th

ive
sit
y
a-
id
er

un

na
in

ib

mo

id

-

h.

dy

ty
hys.

lly

e-
ci.

ed

in
ure

u-

id

ca-
k,

’’

so-

m-

he
e,’’

ar

nt

two-

2259Phys. Fluids, Vol. 10, No. 9, September 1998 Cai, O’Brien, and Ladeinde

Down
idealized rapid distortion analysis supports the notion t
dilatational modes are less effective in scalar spectral tra
port than the solenoidal modes. Computations have sh
that the dilatational modes contribute little to the scalar fl
in compressible turbulence with a uniform mean sca
gradient.11 This result is consistent with the smallness of t
integral length scale of dilatational velocity components. I
also consistent with recent studies on the effects of co
pressibility on Reynolds stress,25–27wherein the reduction o
the integral length scale by compressibility plays a key ro
It is a part of a model which captures the steep decreas
the growth rate of fully developed free-shear layers as
convective Mach number increases.

A similar phenomenon must also occur with advect
transport of other scalar quantities such as partial den
rY, or concentration. In these cases the role of densit
more complex. In particular, a direct effect of velocity dil
tation on scalar evolution is added to advection by soleno
and dilatational modes, as can be seen if the mass cons
tion equation for density is combined with Eq.~1!.
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