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In nearly isothermal, compressible turbulence of a nondense gas the mass fraction of an embedded
passive scalar satisfies the same formal conservation equation as a passive scalar in incompressible
turbulence. Direct numerical simulation of this system shows that the compressible turbulence
modes are less efficient than the incompressible in transporting scalar spectral content from large to
small scales. It is argued that the cause of this outcome is the reduced size of the integral length
scale of the compressible velocity components Visis that of the incompressible velocity
components, and this also explains the experimentally observed ineffectiveness of the dilatational
velocity modes in determining scalar flux in homogeneous, compressible turbulence with a uniform
mean scalar gradient. @998 American Institute of Physids$S1070-663(98)00609-4

I. INTRODUCTION equal, if gravity is the only external force, and if the thermal

] ) ) ] ) diffusion of the scalar is ignored] can be described by
From linearized analyses to direct numerical simula-gjcis jaw

tions, previous studies have demonstrated that the evolution
behavior of compressible turbulence is determined by the J=-DVY, 2
turbulent Mach numberM;, and the initial conditions on

) hereD is the bi iffusi fficient of th lar in th
density, pressure and temperature fluctuatfoA#\s a con- whereD is the binary diffusion coefficient of the scalar in the

n ¢ differeril. and initial condition moressibl carrier fluid. Kinetic theory of nondense ga%ean be used
sequence o ererv, a aico ons, COMPIEssIvIe , ohtain an approximate expression for the diffusion coeffi-

turbulence typically changes very rapidly at the initial stage,Cient D
then arrives, asymptotically, at one of three distinct states: T
(a) nearly incompressible, solenoidal flow dominated by vor- D =3k°T/(16nmy,015012),

ticity, (b) flow characterized by near statistical equilipartition . .
v, () y quiip wherek? is the Boltzman constanty,, is the reduced mass

of energy in vortical and compressive modes,(@rnearly . ) .

pure acoustic turbulence dominated by dilatational, compresQf the bmary systemm !s.the number Of molecules per unit
sive modes. These states are labeled, respectively, as caseé@,ume’ 012 IS the g)ll|§|on cross section fqr molecu_les of
E, and D in this article. The relative fraction of kinetic en- types 1 and 2 ana, is the_ average relative velocity of

ergy in acoustic modes increases from S to D and alsgnolecules of types 1 and 2. is expected to be propor-

changes the density and velocity intensity scalings with wrional to the molecular kinetic velocity which is of order

112 ; T ;
bulent Mach number as well as the energy spectral sﬁépe.Th.' r\]/vher(;:T '3 thg/grempﬁrattgg. Sr:nms propomonzl 1, h
It has also been found that the increase in compressibility i Ich IS ot orderr/ 1, where IS t € pressure, we ave the
going from case S through E to D causes a change in th llowing approximate scaling relationships with tempera-
evolution of the Reynolds stresse$here is some evidence
that an increase in compressibility may have only a marginal ~ ,~T-1; D~T%2 pD~T2
influence on the efficiency of the turbulence in transporting_ ) _ )
and mixing of an embedded passive scalar, although thi$NiS suggests that, in compressible turbulence with modest
aspect has not received the attention given to the turbulend@mperature fluctuations, the simplifying assumption,
itself. In the following work we address this issue specifi-

. . . pD =const, 3)
cally in the case of nearly isothermal, compressible turbu-
lence. may be more defensible than the more common assumption
The transport equation for mass fractiof,of a species  of a constant diffusion coefficient. o
embedded in a flow with velocity(x,t) can be written as In this study of the effect of compressibility on the trans-

port of a scalar we have reduced the complexity of @&yby
oY 1 adopting both Eq92) and(3) in order that only two stochas-
—+u-VY¥Y=——=V-(pJ), (1)  tic variablesD (or p) and u determine the evolution oY.
at p Then Eq.(1) becomes

[ illiantsi aY
where J is the_z scalar flux vector. From WillianTsif the L VY=DV2Y. 4)
molecular weights of the fluid and the scalar species are dt
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It. should also be noted that, in statistically homogepeous {vf(a,t)ij(b,t»:O, j=1,2,3.
circumstances, botl and its Favre-averaged fluctuations, . , , .
defined asY”=Y—((pY)/{p)), satisfy Eq.(4) since both Hgnce the asymptotlc variance of the displacement of a fluid
(pY) and(p) can readily be shown to be constants in spacd®@int can be written
and time. The remainder of this article will focus on the ((Xj—aj)2>22t(<(vjs)2>/\jsj+((v?)2)Aﬁ-),
Favre fluctuationy”. It obeys an advection diffusion equa- s b ) ) ]
tion which is formally identical to the often-studied passive WhereAj; andAj; are, respectively, the solenoidal and dila-
scalar in incompressible turbulence, but differs from it intational Lagrangian integral time scales, defined by
having both solenoidal and dilatational modesuinand a = (X, DX, t+ 7))
diffusivity which is a random variable. A}T—f m2

In this study we extend a previous investigafiom con- 0 <(Uj )%
sider the spectral behavior of Favre-averaged mass fraction The relative sizes of Lagrangian integral time scales can
fluctuations in three types of forced compressible turbulencehe deduced in the case of a uniform mean gradient scalar in
vis avis its behavior in solenoidal turbulence. The approacha flow with scalar fluctuations, which are statistically
is direct numerical simulation, which is outlined in Sec. Ill. homogeneou¥’} Writing scalar flux(pvY”) in the direction
First we derive an expression for the ratio of scalar flux dueof increase of the mean scalar field with constant gragéent
to compressible modes to scalar flux due to solenoidait follows that

modes. <pUY”> — <pUSY”> + <pU DYN>

== BUWDAAS+((vD)2)AD)).
II. LAGRANGIAN INTEGRAL TIME SCALES IN

HOMOGENEOUS, COMPRESSIBLE TURBULENCE Hence the ratio, Qf dilatational scalar flux to solenoidal
scalar flux can be written

dr, m=S,D.

We consider the motion of a fluid particle in stationary,
homogeneous, compressible turbulence by adopting the La-

(oY) (D)%) Ay

- Sy S\2\ AS -
grangian procedure of Taylor's diffusion by continuous (pv>Y") <(Uj) ) Az
movement§.' B _ . _ It is convenient to adopt the kinetic energy parameter
o If X(a,t) is the pos!no_n at tlmd_e of a particle which was X=[<(U?)2>/<(Uj)2>], which is the ratio of kinetic energy
initially at a andv(ayt) is its velocity, then per unit mass in the dilatational modes to the total kinetic
t energy per unit mass, and which is the definition commonly
Xij(at)=a;+ fovj(a, 7)d7. used in the literaturé!! Then we find,
X AzDz

Because the flow is statistically homogeneous, there existsa — _4 (6)
) . - ) =1 s
generalized Fourier transform of, say, v. Adopting X N2

y 9 e . . . . i . . .
Moyal's™ decomposition ok in Fourier space we obtain Numerical simulation of scalar flux in compressible tur-

_ bulence with a uniform mean scalar gradient by Blaisdell

Vm(a,t)ZJ exp(—ik-a)v"(k,t)dk, m=S,D, et al,'! showed thar is negligibly small, even whely is

_ finite. Equation(6) implies that the Lagrangian integral time

k-v scaIeAzD2 is much smaller than the Lagrangian integral time
2 scale,A3,. We will return to Eq.(6) in Sec. V, where spec-

K]

: . . tral computations show that the compressible modes are less

where superscripts S and D are, respectively, the solenmdaf. : . . . .
ficient than the solenoidal modes in transporting scalar in-

. . . ) €
and dilatationalcompressiblecomponents of the velocity, tensity from low wave number to high wave number regions

v(at)=v(at)+vP(at). of the spectrum. Both these spectral and physical space trans-
port results are explained by a shorter integral scale for the
compressible modes.

VP(k,t)=k VI(k,t)=V(k,t) —VP(k,t1),

VvS(k,t) andVP(p,t) are orthogonal but so ane’(a,t) and
vP(b,t) as the following argument shows,

(vi(a,)-vP(b,t))= f (VS(k,t)-VP(k,t))
I1l. NUMERICAL SIMULATION OF FORCED,
X exy —ik-(a—b)]dk COMPRESSIBLE HOMOGENEOUS TURBULENCE

where use has been made of the property The numerical method used in this article is based on the
~ ~D s ~D B essentially nonoscillatoryENO) method developed by Shu
(VK 0 -v2(p, 1) = (k1) -Vo(k,1)) o(k—p). and Oshel? Details of its application to decaying homoge-
But sinceVS(k,t) andVP(k,t) are orthogonal, we have neous compressible turbulence are available in Ref. 13 and
s D _ will not be repeated here. Since this study invokes transport
{(via,p-vi(by)=0. ®) of a passive scalar, the turbulent motion can be simulated
By isotropy this result can be written, eschewing thewithout reference to the embedded scalar. Details of the sca-
summation convention throughout this section, as lar field simulations are presented in Sec. IV.
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To generate approximately stationary, compressible, hoIABLE I. Forcing scheme and flow parameters.
mogeneous turbulence fields with zero mean velocity, we

. ) C S E D
have adopted the technique of Kida and Or$Zadnereby an ase
artificial external force at low wave number is added to the At 0.02 0.02 0.01
momentum and energy conservation equations. In nondimen-1 -1 134 1 0
sional Eulerian form, the defining equations are 3at R 7
2
ap At e 0 V1/5 V3i4
i K (puj)=0, (7) q 0.0972 0.113 0.113
! M, 0.340 0.371 0.404
5 P o 4 A 1.244 1.186 1.148
v o _ Ry 53.5 58.3 58.4
gt (PuDF o (pu U= T X (dip)+pFi, ® 7 0.0860 0.0792 0.0779
pY 0.0111 0.587 0.990
P l, 0.0498 0.259 0.359
El (PeT) [(PeT+ p)u;]
3 7 aT whereAt is the time step, whose value and thosd-gfand
~ % diju;+ (y—1)P, x| TP Fi, ®  F, can be found in the first three rows of Table I, where the

Reynolds numbeR g,=200. As noted by Caét al,'® under
where er is the nondimensional total energy given by the condition of the low Reynolds numb&e,=200 with
er=e+3uU;u;, eis the nondimensional internal energy;  64° mesh, the ENO scheme can resolve the spectrum in the
= ul(du;i/9x;) + (duj/9x) — (2/3) (dui/ 9x,) 6] is the de- wave number rang&=20, which includes the energetic
viatoric stress tensor and the second coefficient of viscositynodes of principal interest in the study of advection. A
W2, is taken asu,= —3u. As done by Cakt al,'® the ve-  64° mesh is adopted in these three-dimensi¢88) simula-
locity scale is chosen to he , the speed of sound divided tions of spectral evolution from initial scalar spectra in which
by the square root of the ratios of specific heats, thatijs, intensity is concentrated in low wave number modes.
=(R*T3), whereR* is the specific gas constant afg is Through the use of this scheme we have successfully
the initial mean temperature. Since the mean flow field inproduced three distinct types of approximately stationary,
homogeneous turbulence has no intrinsic length scale, wRomogeneous, compressible turbulence which are labeled in
choose an arbitrary length scals , as the reference length, Table | as solenoidal, S, equipartition, E, and dilatational, D.
and the time scale ikg/ug . The density is scaled by the The identifying letter indicates the relative energy content in
initial mean density,p§ , so thatp=p*/p§ . For consis- the solenoidal and dilatational modes. For example, E indi-
tency, the temperaturd, pressurep, and energy per unit cates approximate equipartition in energy between the two
mass are nondimensionalized by, respectively, the initiamodal types. S and D denote, respectively, almost entirely
mean temperaturd,; , the initial mean pressur@g , where  solenoidal and almost entirely dilatational modes.
pe =psR*TE , and the mean square velocjty; |2. The vis- In the remaining rows of Table I, the obtained values of
cosity is nondimensionalized gs=1/Re,=u*/piusLy,  important flow parameters, averaged over the computational
u* is assumed constant aitk, is the reference Reynolds temporal-spatial domain, are presented for each of the three
number. The Prandtl numbep, = *C*/a , whereg* is  types of turbulence. They are defined as follows: total kinetic
the thermal conductivity an@* is the specmc heat, is also energy,q;=3(u;ju;); turbulent Mach numberV = uys/c;
constant. In all the above deflnltlons the supersdfiptde-  Taylor microscale,\ = (e/5uu?,)~*% Taylor microscale
notes a dimensional variable. The artificial external force Reynolds numberR}\—(S/SMe)l/Z(p){u u;); Kolmogorov

Fi, has the form length scaley=[ (1% €)*4(p)¥?]; ratio of kinetic energy in
_ compressible modes to total kinetic energyy
Fi(x, 1) = Ay (D)sin(x;) + Byj(t)cogx)), =(uPuP)/(uju;); density relative intensity) ,= p/md(p)-

In  this  definition  e=u[4/3(du; /ax)2)+(w2>]

whereA(t) ={Aj(t)} andB(t)={B;;(t)} are Gaussian ran- Ume=(UiU)2 and ¢ is the average sound speed:

dom variables with zero means. Each elemenA¢f) and —(( T)”Z>
B(t) is assumed to be statistically independent. The diagonal Y .

and off-diagonal parts oA(t) and B(t) represent, respec- The parameters in Table | have been purposely_ chosen to
tively, the compressive and noncompressive pare, af, in produce the three types of turbulence S, E and D, in order to
other words, the longitudinal and transverse excitations. |d|splay a wide diversity in kinetic energy ratig, which by

the present simulations, the second-order moments of thdefmltlon satisfies &x<1. Simultaneously, they display

diagonal and off-diagonal elements are chosen to satisfy gﬁlperr?tx '“T:éilynﬁgnubaelr\l\/ﬂalue;ngf é??;;g:tgcualeergy’ txrn
to LN

Fo . . increase in the ratio of energy content in compressible
3AL it i=j, modes,y, corresponds to an increase in the relative intensity
(A ()= (B (t))= of density fluctuationsl , .
i if i] The purpose of generating a compressible turbulence
3At° ' which is approximately statistically stationary is to simplify
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and clarify the role of compressibility in transporting an em- 10 . T
bedded passive scalar. Since transport by all scales of com- 09 f

- . . Case S
pressible turbulence, large and small, is expected to be sig- osk 3
nificant, the dynamics of a decaying turbulence would
unavoidably complicate the kinematics of scalar evolution,
except, perhaps, if, at large Reynolds number, a statistically
stationary regime of the turbulence were to develop at very
small scales, and we were interested only in the scalar prop-
erties at those scales. We have neither the high Reynolds
number computational capability nor an interest confined to
the small scales of the scalar field. Therefore we have at- 01
tempted to produce stationary, compressible turbulence in- 0o . ,
duced by a driving force at the largest scales, and we exam- "o 50 100 150
. ) e (a) t
ine the spectral evolution of the scalar from distributions
which initially have intensity predominantly in the low wave
number regime. The nature of the driving force will clearly 1.0 IS
play a role in the details of scalar spectral evolution. As we 09
show in Sec. IV, there is a stark difference between the com- Case E
puted results for the evolution of the scalar spectrum by so-
lenoidal velocity modes and those by dilatational modes, re-
sults large enough to justify, we believe, some general
conclusions about the role of compressibility in passive sca-
lar transport. An alternative approach would be to generate
random compressible velocity fields, independent of the
equations of motion, by manipulation of random number
generation, but that appears to be even less closely related to
Navier—Stokes homogeneous turbulence, itself a somewhat
artificial construct. 2o 10 20 30 20 0 50 70

While it is desirable to obtain a statistically stationary, (b) t
turbulent velocity, it is impossible to judge precisely if a time
series is statistically stationary unless it is known over large
(technically, infinite periods. It is also impossible to know
definitely when an initially evolving quantity becomes statis- Case D
tically stationary. Thus, the judgment of stationarity is some-
what subjective and uncertain. The concerns about this un- o7F 7
certainty of judgment depend on how seriously the results
depend on the stationarity. In our case, studies are focused
on a qualitative assessment of the compressibility effects on
scalar transport due to various compressible turbulent fields
with decidedly different kinetic energy ratios, but without
rapidly changing velocity statistics. For our purpose a looser,
more subjective judgment suffices to indicate approximately 0.4
statistical stationarity. 0.0 AL L L I
Figure 1 shows the simulation results for the evolution (c) t

of kinetic energy in the S, E, and D cases. As the flow field
is excited by the random force at the largest scales, kinetic
energy grows from an initially zero value until it reaches a
stable mean valu@isted in Table ), when the smallest-scale observed for the S case after 110, for the E case aftar
motions reach statistical equilibrium under the effects of ad=40, and for the D case aftér=15. In a quasiequilibrium
vection and viscous dissipation. The oscillatory phenomenatate, the statistical quantities of small scale, such as the dis-
shown in Fig. 1 are a consequence of the Gaussian randosipation rate and Kolmogorov length scale, are relatively
force introduced at the largest scatédrigures 2, 3, and 4 smooth with variance smaller than 1% while large scale sta-
show the evolutions of another two important parameters, théstical quantities, such ag, M, andR, (not shown show
Kolmogorov length scaléz) and the Taylor length scal@), quasiperiodic behaviors with variances around 10%. Figure 5
for each type of turbulence. In contrast to the strong oscillashows the spectral distribution of compressible and solenoi-
tory behavior observed in the evolution of kinetic energy, thedal energy in the quasistationary state for each of the three
oscillations of the Kolmogorov length scale are muchtypes of turbulence. In order to simulate a passive scalar
smaller due to the strong smoothing effects of moleculaembedded in each of the three types of compressible turbu-
viscosity. Loosely speaking, statistical quasiequilibrium islence, the scalar field is turned on at a point when the veloc-
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FIG. 1. Evolution of kinetic energy in caséa) S, (b) E, and(c) D.
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10° T T —r—r T T ~ TABLE II. Initial integral scales.
B S Case S 3 Case  S/S1  E/S1  D/SI  S/S2  E/S2  DIS2
w0 b Svree. o TTTTTTTTT Case E ]
- CaseD ] (o 204 194 171 204 194 171
1 (Iy)o 0426 0426 0426 0741 0741 0741
] (|Y,,) 0209 0220 0249 0363 0382 0433
b ! 0

(@) First, the above procedure is used to generate a random
scalar field in Fourier space.

i T T T e (b) Next, the scalar field is transformed into physical

space. In physical space, the scalar value at each node

is reset to 1 if it is positive, and te-1 if it is negative.

1° " - ] This operation yields the desired double-delta distribu-
\ 1 tion but also causes the scalar value to change abruptly
] between adjacent nodes, thereby producing significant

high-wave number components in the scalar field,
which are poorly resolved in the simulations.

] (c) Finally, the scalar field is retransformed into Fourier
3 space. The Fourier amplitudes of the scalar are multi-
4 plied by a filter functionF(k), defined by

4 F(K)= 1 ksk

S E=s

wherek, is a specified cutoff wave number. This fil-
. tering operation removes many of the poorly resolved
(;; 0 ' T K 0 high-wave number components of the scalar fields.

FIG. 5. Time-averaged stationary kinetic energy sped@n:dilatational
energy spectraEP(k) and(b) solenoidal energy spectr&S(k).

10° 1

Two distinct initial scalar spectra have been used in this
study. The initial scalar spectrum for the first case, labeled
Si,is

ex —0.1(ki+kZ+k2)] k=<3.0,

ity field is quasistationary, and starts frons131.9—139.5 Evi(kO~15 k=30

for the S case, from=50.8—61.2 for the E case, and from
t=16.9—-24.4 for the D case. The flow parameter values irand, for the second case, S2,

Table | are temporal-spatial averages starting from the initia- 1

tion of the scalar field at these times. — k=1.
Eyn(k,o)"" k2

IV. NUMERICAL SIMULATION OF THE PASSIVE 0 k>1.

SCALAR

The treatment of random numbers is different in the two
Initial conditions for scalal”(x,0) are generated from a cases. In the S1 case numbers are generated by the first pro-
random variable/(k,0), in Fourier space, of the form cedure described above, while S2 numbers are generated us-
_ ing the second procedure in which the cutoff wave number,
¥(k,0)=Ey(k,0expg2amio(k)], k., in the filter function is 2. Because of this difference in
where 6(k) is a uniformly distributed random number be- their generation procedure S1 and S2 have different initial
tween 0 and 1k=||k||, andE,~(k,0) is a prescribed term. To probability distributions. S1 has a near-Gaussian distribution
ensure that”(x, 0) is real when transformed to the physical and S2 has almost a double-delta distribution.
space, we set There is evidence from numerical simulations of incom-
(—K.0)= ¥* (k.0) pl’eS.SI.b-le turbulence that scalar evolution is less sensitive to
4 ’ ¥ (0, the initial spectral shape of the scafathan to the ratio of
where ¢* is the complex conjugate af. Finally, we trans- initial integral length scales of the scalar and the
form y(k,0) into physical space and normalize all nodal val- turbulence'® Thus, it is anticipated that there will be differ-
ues ofY” by their root mean squar@ms) value. ences in the subsequent evolutions of the scalar spectra in
To generate a scalar field with specific initial properties,cases S1 and S2, especially at small times, and these will
a more refined method can be used to modify the abovenostly be due to the differences in the initial scalar/velocity
procedure. For example, to generate a scalar field witlintegral length scale ratios.
double-delta probability distribution, three steps are taken. In Table Il, the initial length scales of the scalar and the
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T L solenoidal and dilatational velocity modes with the scalar
0o | ........... 3 fluctuations. Dilatational modes are dominant in the D/S1
N ] < e E case, which suggests that the much slower decrease of scalar
g e e ] variance in this case is due to a slower spectral transport to
§ °‘75' . E the more dissipative higher wave numbers by the dilatational
Bosk s 7 modes. Simultaneously the S/S1 case shows the most rapid
S sk NN decrease in scalar variance, or, equivalently, the most rapid
% 045_ ] spectral transport of scalar intensity to the smaller scales. On
&k the other hand, the distinction between results for the S/S1
03k SISt E and E/S1 cases is very small. However, we note that the E/S1
oof E/St 3 case has a solenoidal energy spectrum similar to that of the
of- """""""""""" D/s1 S/S1 case, although the dilatational spectra differ sharply
: (see Fig. b. If the dilatational modes are less effective in
0 I e scalar spectral transport than the solenoidal modes, this
T would also explain the S/S1 and E/S1 results. The same be-
FIG. 6. Evolution of scalar variance in S/S1, E/S1, and DIS1 cageis ~ Navior of the scalar variances has been reproduced in the S2
eddy-turnover time. case¥® (not shown.

This interpretation is also supported by simulations of
scalar variance spectral evolution in cases S/S1, E/S1 and
velocity, and their ratios, are given for each type of turbu-p/s1 (Fig. 7), which begin with the same initial scalar vari-
lence S, E, and D and for both types of initial scalar spectragnce spectrum but with distinctly different velocity fields

S1and S2. o _ _ (see Fig. 5. In all of the S1 cases it can be seen that the

The initial velocity integral length scalel)o, is defined  high-wave number scalar variations begin from states of neg-

by ligible energy and, in general, after one eddy-turnover time,
37 [k LES(k,0)dk appear approximately steady as a consequence of turbulent

( o= W distortion and an increase of scalar gradient which take place
0 ' much more quickly than the overall decay of the scalar
where ES(k,t) is the energy spectrum of the solenoidal field.’> At the same time, the phenomenon of higher spectral
modes of the turbulence, anb, (), the scalar integral length intensity levels in the S/S1 case than in the D/S1 case at high
scale is given by wave numberslarger thark=4 in this casg and the reverse
72k~ Ey(k,0)dk at the smallest wave numbers, implies a faster spectral traqs-
(Iyn)o= o A , fer in S/S1 than in D/S1. The same behavior of scalar vari-
4] gEyn(k,0)dk ance spectra has also been observed for the S/S2, E/S2, and
whereE,.(k,t) is the spectrum of scalar intensity. D/S2 c_a§§$Fig. 8. It is. noted that all the S? cases hav.e thg
In the definition of (), the initial energy spectrum of Same initial scalar variance spectrum, which differs signifi-

the incompressible modeES(k,0), is preferred to the total cantly from that of the S1 cases. RetL_Jrnirjg to Fig. 5 it can
energy spectrurk(k,0), because it is in incompressible tur- be seen that, even though 'the total kinetic energy is almost
bulence that the phenomenon of the effect of integral lengtin® same, the mcompres&blg energy spedﬁ%(,k)', and
scale ratio on scalar evolution was establistaghd the con-  cOMPressible energy specti,’(k), are at quite different
stant 3r/4 with definition of (), is obtained for solenoidal €Vels. except for the solenoidal spectif(k), of S and E
flows. However, ifES(k,0) is replaced b¥(k,0), the values YP€ turbulence, and the dilatational SpE?CEB(k%’ gf E ?,Qd

of (1), in Table Il are altered by less than 10%. Furthermore D tyP€ turbulence. The dilatational strain rgfte/E>(k)]™,

as the results in Sec. V will show, the integral length scaléjogm'gateflz'n D cases while the solenoidal strain rate,
for the compressible velocity modes is much smaller than thé E(K)]™%, dominates in S cases. This difference in the
integral length scale of the solenoidal modes and is, therdnode of velocity strain rate gives rise to a difference in the

fore, likely to be less effective in determining the behavior Ofdgvelopment of the scalar variar)ce spedfigs. 7 and 8 In
scalar evolutiort® Fig. 9 the spectra of scalar gradient for both S1 and S2 cases

are displayed. They also show a similar behavior whereby
the D cases appear to be less efficient than the S cases in
developing the small scale structure of the mass fraction
The evolution of scalar variance is presented in Fig. 6field.
for the S1 cases of scalar transp(ite time unit used here It is worthwhile here to examine directly the advective
and later on is the eddy-turnover time based on Taylor scaleffects of dilatational and solenoidal velocity modes on sca-
Mu,md. The initial scalar spectrum for these cases is prodar gradient. As illustrated in the work of Corrsin,
vided in Fig. 7a), and has scalar intensity compacted in theObukhoff?° and Batchelof! the development of the scalar
large scales. It can be seen from Fig. 6 that the decay rate @hriance spectrum is determined by the action of the turbu-
scalar variance in the S/S1 case differs sharply from the ddent motion on the scalar distribution by introducing a con-
cay rate in the D/S1 case, which, we speculate, is a consénual reduction of the length scale of scalar variations. Dur-
guence of a difference in the nature of the interaction of thang this process, the random convection of material elements

V. SCALAR FIELD SIMULATION RESULTS
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FIG. 7. Development of scalar variance spectra in S1 cdae3,=0, (b) T,=1.0,(c) T,=2.0, and(d) T,=2.5. T, is eddy-turnover time.

of the fluid is inevitably accompanied by distortion of these gy} aul (90'3
elements and afstatistica) increase in the gradients of the &7=S(t)= Ty (97=0.
scalar in the absence of molecular conduction. This mecha- ! 2 3
nism can be illustrated by a simple rapid distortion analysis € o s 1
of the development of scalar gradient in a compressible flow. ““1_""2 _""3 _ -~ d(t)

Using Eq.(4), we obtain the following equation for sca- Xl dx; dxz 3 ’
lar gradient:

aul o
S (AR TSP [ 7 0 1)
dtlox |~ ax; ox; XXy \ X )
JD (92Y” we find
" ﬁxk &Xkaxk . d (9Y”" 2 1 aY" 2
If the molecular diffusion terms are ignored, the mean square  dt ( ax1> _2( 573 d)( ax1> '
scalar gradient satisfies
) d (9Y” 2 1 (9Y” 2

A R Es (5] =59 %)

dt | ax; ax; 9xj 9%’ 2 2
where the summation convention is not used. Thatisl, 2, d (ﬂ) 2_ 2 (ﬁ) 2
or 3. dt | ox3 3 T\ dx3

In a principal axis reference frame, with the following
simplified strain rate assumptions, On integrating these equations one finds,
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FIG. 8. Development of scalar variance spectra in S2 cdae3,,=0, (b) T,=1.0,(c) T,=2.0, (d) T,=2.5. T, is eddy-turnover time.

locity component is more efficient in the production of scalar
gradient by the velocity field stretching mechanisms. The
numerical results, displayed in Figs. 6—8 for the evolution of

p( 2 jt ) scalar variance and its spectra, and in Fig. 9 for the evolution
Xexp —5 [ d(ndr]|, (10 . : . o

3 Jo of scalar gradient spectra, are consistent with this simple

rapid distortion model. Figure 10 shows the variance of sca-
lar gradient in the S1 cases as a function of time. The
asymptotic crossover of the D/S1 case is easily traced to the
slower decrease of scalar gradient intensity in the low wave
number regions of the spectra presented in Fig. 9.

t
(VY")2= (VY”)S( 2 coshf 2s(7)dr+1
0

where (VY”)% is the initial value of FY")2.

Clearly the dissipation rate of the scalayy , is affected
differently by the irrotational strain ratg(t) and the dilata-
tional strain rated(t), although both play a role in its evo-
lution. In particular, while the sign ofi(t) in Eq. (10) is . . .
relevant, the sign of(t) is not. From the analysis of Sarkar We return now to Eq(6) a_nd the meffe_ctwene;s of di-
et al,22 d(t) is expected to have a pseudoperiodic behaviorlatat'onal modes in transporting a scalar in physical space,

similar to that of the dilatational velocity®, and its time Which was observed by Blaisdeit al'ina numerical study
scale to be of the order of the integral time scale of thelf scalar flux with a gmform mean scalar gradient in homo-
compressible velocity, and, therefore, to be much shortegeneous, compressible turbulence. They showed that the
than the corresponding integral time scale of the solenoiddtontribution from dilatational velocity to the scalar flux term
velocity, as implied by Eq(6) which will be revisited in the is small compared to the contribution from solenoidal veloc-
next paragraph. In such a caskt) oscillates rapidly com- ity, even when the fraction of kinetic energy in the compress-
pared to rates of change sft) and, therefore, the exponen- ible mode, x, is large. From Eq(6), and noting that our
tial term in Eq.(10), which is dependent od(t), is expected expression for scalar flugpvY”) in this simple configura-

to be less effective in developind {f”)? thans(t) is. There tion is equal to theirs, it can be concluded that their obser-
is no claim here that dilatational strain rate has a negligiblevation implies that the Lagrangian integral time scale of the
effects on scalar dissipation, merely that the solenoidal vesolenoidal velocity must be larger than that of the dilatational
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is clearly much larger for the solenoidal modes. The time
scales of Eq(6) can be connected to the more accessible
3 Eulerian length scale by assuming an approximate equality
] of Lagrangian and Eulerian velocity time correlations in low

Reynolds number flow, as suggested by Burgers and pro-
posed by Corrsif® That is,

(v]TX(a,1),t]o|TX(a,t),t+ 7])

Spectrum of Scalar Gradient
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FIG. 9. Spectra of scalar gradientsTat=2.0: (a) S1 cases anth) S2 cases. IN @ homogeneous, compressible flow confined in aHox,
(vf)=(u?). If an additional assumption, such as Taylor's
approximation of frozen flow, is used with(ug)

velocity. From our simulation of case E, a time-averaged=/(py/p,), the Eulerian velocity spatial correlation can de-

ratio of Lagrangian integral time scale of dilatational veloc-termine the Lagrangian integral time scale. Since Fig. 11

ity to solenoidal velocity is estimated to be 0.079, accordingclearly shows that the Eulerian integral length scale of dila-

to Eq. (6), if a sliding-averaged scalar flux calculation is tational velocity is much smaller than the solenoidal velocity
used. integral length scale in the E case, and similar behavior is
In Fig. 11 we display the spatial distribution of the Eu- observed in all computed cases, the explanation for the rela-
lerian velocity correlation in the E case for both the solenoi-tive weak scalar transport by dilatational modes, observed by
dal and dilatational modes. The Eulerian integral length scallaisdell et al,'* lies with the small value of their Lagrang-
ian integral time scale.

~uMx,Hul(x,t+ 7)), m=S,D.

VI. CONCLUSIONS

Three-dimensional simulations of a dynamically passive
mass fraction, transported by three cases of homogeneous,
compressible turbulence, each with distinctly different levels
of compressible energy content, have been carried out in this
3D numerical study. In situations of small temperature fluc-
tuation the mixture fraction obeys the classic passive scalar
advection-diffusion equation, except that the velocity field
has both dilatational and solenoidal modes and the diffusiv-
ity is a random variable. The focus of this work is on the
advective effects of the dilatational modes, which are shown
to be much less effective than the solenoidal modes in trans-

Variance of Scalar Gradient

0.0 E L " " 1 2 L " 1 1 1 " 1

o » T T, porting the scalar field variance content from large scale to
N small scale regions of its spectrum. The cause is traced to a
FIG. 10. Evolution of mean square scalar gradiéaeY”/ax)(aY"/ax)),  large discrepancy between _the sizes of the respective integral
in S/S1, E/S1, and D/S1 caség is eddy-turnover time. length scale for the dilatational and solenoidal modes. An
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