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diffusion in thin cavities 

Abstract In this paper a finite element formulation is proposed for the calculation of advection and 
diffusion in a thin cavity. For these kinds of systems, very high aspect ratio elements are necessary for 
cost-effective simulation. Locally, element dimensions, say in x and y, are comparable, whereas the 
dimension in the transverse direction z is orders of magnitude smaller than those for x and y. In our 
formulation, the three-dimensional basis functions for interpolation are constructed as a tensor product 
of the basis functions that span the lateral (x,y)  plane of an element and those that span the transverse 
direction. Unknowns along the transverse direction are solved implicitly, in a line-by-line fashion, using 
the tridiagonal matrix algorithm, while the "out-of-line" unknowns are treated either explicitly or 
semi-implicitly. Several applications to material processing are discussed, as are the computationally- 
intensive components of three variations of our basic procedure. 

1 
Introduction 
Some problems of interest in engineering involve the flow of a liquid, gas, or molten plastic in very 
narrow cavities. These are exemplified by the flow of molten polymer in injection molding, compression 
molding, and in-mold coating; the flow of lubricants in narrow channels, and fluid flow in certain types 
of heat exchangers. The geometries involved are essentially two-dimensional, locally, but the orientation 
in space is arbitrary and quite complex. The casings of certain kinds of computer monitors, automobile 
body panels, and the handset of a telephone, are some examples in material processing. To fabricate 
these structures, molten plastic is forced to flow in the cavity of a mold for the parts. When geometric 
complexity is combined with the fact that the Reynolds number of the flows in these systems is low, the 
finite element method becomes very attractive. 

The physics in thin cavity problems usually do not vary significantly in the local lateral plane, compared 
to the thickness direction. Thus, it is pertinent to pursue an approach that takes an advantage of very 
large element aspect ratios in order to obtain a cost-effective simulation. For this to happen, 
means need to be devised to circumvent the significant amount of stiffness, and hence convergence 
difficulties, that is introduced into the discrete equations by large element aspect ratios. An approach that 
accomplishes this is the subject of this paper. 

The analyses of interest in this work are reminiscent of the shell theory in structural mechanics, 
where a form of the solution through the thickness of a shell element is assumed in place of an explicit 
three-dimensional discretization. In the structural case, the degrees of freedom are the three displacements 
(x,y,  z) and three rotations associated with the changes in the curvature of the part. However, for the 
fluid mechanics problem of interest to us, an assumed solution in the thickness direction does not 
appear to be a prudent way to do things. Some reasons for this include the complications associated 
with the (hydrodynamic) nonlinearity of the advection terms at high P~clet or Schmidt numbers, and the 
rather complicated dependence of viscosity on temperature and strain rate, which vary strongly in the 
transverse direction. 
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Fig. 1. Figure l(a) shows the way 
three-dimensional elements are stacked 
in thin cavity formulations. Here, the 
base elements are triangles while the 
three-dimensional dements are prisms. 
Figure l(b) shows two typical 
three-dimensional elements and the 
one-dimensional elements in the thickness 
direction. The one-dimensional elements 
are edges of the three-dimensional 
elements 

The approach we propose starts out with shell elements, by way of mesh generation but, internally, 
the code stacks three-dimensional elements on top of the base elements (Fig. 1 (a)). We use a separate 
set of basis functions for the lateral (x,y) plane and the thickness (z) direction, with a tensor product of the 
two sets constituting the basis functions for an element. However, even with this, and unlike shell theory 
where the bandwidth is determined by grid topology in the (x,y) plane, the bandwidth of our 
equations will still be governed by three-dimensional elements, rendering the procedure quite unattractive 
for realistic engineering systems. To remedy this, a line method is proposed in this paper, in which the 
unknowns in the thickness direction are solved implicitly, using the tridiagonal matrix algorithm. Various 
treatments of the "out-of-line" nodes are possible, some of which are discussed critically in this paper. 
Several applications to material processing are discussed, as are the computationally-intensive components 
of three variations of our basic procedure. 

2 
Numerical procedure 
The generic form of the equations of interest in this paper is 

04) /~4) ~4)+~ + o  (1) 

Equations such as this arise from some conservation laws which, in this case, states that the rate of 
change with time t of a quantity 4) at a fixed point (Eulerian) is equal to the net advection of 
qb away from the fixed point, the net molecular diffusion of 4) to the fixed point, and the volumetric 
rate of generation Q of 4) at the fixed point, u and v are the components of velocity, which advect 4) in the 
x -  a n d y -  coordinate directions respectively, and ~c is the diffusivity for molecular diffusion of 4). For 
now, we will assume that velocities u and v are prescribed; the way to obtain them depends on the 
application, as we discuss later in this paper. It should be noted that multiple equations such as the 
complete set of equations governing fluid flow under non-isothermal conditions can, in principle, be solved 
using our scheme, especially when combined with the segregated approah to solution. Some applications 
are discussed later in this paper in which two equations of the form in Eq. (1) and some other equations 
are solved. 

We will now discuss our procedure for calculating 4). First, to obtain nonlinear stability of the 
calculations we introduce the so-called streamline upwind Petrov-Galerkin method (see Hughes and 
Brooks 0982)), application of which gives the modified equation: 

I " 1 o4) 1 h,v,~.V(u.V4) - 0) = v.~v4) + Q, z + u . V 4 ) - ~  (2) 

where h, is a characteristic length in the flow direction and vs is a parameter of order one, depending 
on local P6clet number, Pe, 

Pe-- 
lulh,  

We introduce a nonstandard finite element interpolation of the form 

3 2 

4)(x,y,z, t) = ~ ~ Nj(x,y)Mn(z)4)jn(t), 
j= ln=l  

(3) 



where N and M are vectors of basis functions in the (x,y) plane and z-direction, respectively. For N, 
we use the linear basis functions of a three-node triangle while, for M, linear, one-dimensional basis 
functions of the Lagrange types are used. A similar weighting function (that is, N i (x, y)M k (z)) is employed. 
The ordinary differential equation from the Galerkin procedure is integrated using either the backward 
Euler or the trapezoid rule, for which the algebraic equation can be written as 

1 I + i  2 I+1 I+i  A /+.1 [Mijk. + AtO~Gijk.(~m ) + AtO2aijk.(C?m ) + Nijk.(4~ )] ~bm,j. 

0 F t+~t~l+~ At(1 - -  01) G~k n A t ( 1  02 ) 2 I • (i %)5'k  + 3 , , ~ m  , + [M~sk. . . . .  %.] 
1 /+1 )  2 I+1 /+1 - [Mok, + AtO~Guk.(d)m + AtO2G~jk.(()., )]4)m,j. (4) 

so that 

(•I+1 = (bi+l I+I 
m + I,jn m,jn + A ~m,jn (5) 

m denotes iteration level within a time step and I denotes the time step. Nijkn represents the 
Newton-Raphson correction to the regular coefficient matrix, which is zero if a scheme which is explicit 
in the convective terms is used. A t l is the time step size for step I. The O's are the usual parameters for 
weighting the contribution of previous (explicit) and current (implicit) values of the terms, to give, 
among other schemes, the backward Euler and the trapezoid rule. The matrices and vectors that appear 
in Eq. (4) are defined below: 
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The velocities t2 and ~ that appear in these equations are the arithmetic averages of the nodal values 
for an element, while t/x, lb, and ~/z are components of the surface normals. We allow specified q5 or flux 
of q5 at the lateral walls, and at the bottom or top wall. Symmetry conditions are used at the centerline 
of the cavity so that only half of the domain is used, with z = 0, b corresponding to the centerline and 
top of cavity respectively. 

One cannot hope to solve Eq. (4) explicitly because of a stability restriction associated with small 
grid size in the transverse direction. Moreover, we have actually experimented with the explicit procedure 
but encountered either unphysical solutions or lack of convergence. A fully-implicit approach is also 
not a viable alternative as this demands too much memory and operation counts, in addition to 
the stiffness problem mentioned earlier in this paper. We use an implicit scheme in the transverse direction, 
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in the manner outlined below. To this end, we rewrite Eq. (4) as 

Ax = f (6) 

where 

( • l + 1  _ r 4-  ~r 
i,m + ~ - -  "r i, m -- "'i,m (7) 

Next, it is pointed out that Eq. (6) can be interpreted in several ways, among which are 1) as an element 
equation, 2) as an equation for the entire domain, and 3) as an equation for a line in the transverse 
direction. In this paper, we will choose the third option. The way to obtain the assembled equations 
for this case are described as follows: 

(a) "Convert" the (6 x 6) matrix problem for each three-dimensional element to a (2 x 2) matrix 
problem for one-dimensional element on a side of the three-dimensional element (Fig. 1). The 
coefficient matrix for the two problems are denoted by A 6~J and Ai2;, respectively. We will 
retain the notation x and f for the unknowns and the right-hand side vector in the new system. 

(b) Collect and assemble the (2 x 2) matrices from all lateral (three-dimensional) elements having an 
edge on the line and at all layers in a stack. Thus, the assembled system will represent the governing 
discrete equations for the line ABE in Fig. l(b). 

(c) Solve the assembled system of equations implicitly with the tridiagonal matrix algorithm. 

2.1 
Variat ions of the scheme 
The process of "converting" the (6 x 6) matrix ATj to the (2 x 2) matrix A~j can be done in several ways, 
including 1) treating the out-of-line nodes explicitly; that i, using their values at the previous time step. 
2) treating the out-of-line nodes implicitly; that is, using their yet-to-be determined values and, 3) using 
the most recent values of the out-of-line nodes; that is, in the Gauss-Seidel manner. For the explicit 
treatment, the equation for a two-node element on line ABC in Fig. l(b) can be written as 

tl 1 

A u X j = f / 2 ~ - - - f / 6 - -  E A~J, X2 i , j = l , 2  . . . .  n 2 (8) 
)~=2 o 

Above, nl is the size of A~j, which is six, and n 2 is the size of A~j, which is two. 20 = n2 + 1. For the implicit 
treatment, we use the current values of the solution at the out-of-line nodes. Since these are not known, 
a condensation procedure is implied, a detailed discussion of which is available on pages 155 and 156 
of Huebner and Thornton (1982). When applied to the present problem, the equation for a two-node 
element on line ABC can be written such that 

2 _ 6  t"~ "~ ["~"~ A62+ k Hkml Am+n2 , j }  ' A i j  - -  A i j  - -  
t m = l  [ _ k = l  

(9) 

with the right-hand side as 

m 6 H (lo) 

Above, H is an inverse matrix associated with the variables that have to be "condensed" out of A 6. 
For Gauss-Seidel treatment of out-of-line nodes, we simply use the most-recent values of the solutions 

at these nodes. Other options for solution are derivable from those presented above. Three of these 
options, which we have experimented with extensively, and will be reported in this paper, are 1) implicit 
out-of-line nodes with only one iteration per time step (IOL1), 2) implicit out-of-line nodes with multiple 
iterations per time step (IOLM), and 3) explicit treatment of out-of-line nodes (EOL). We have also 
experimented with the Gauss-Seidel method but found it to be unacceptably unstable. In the next section 
we will discuss code validation and some applications. This will be followed by a comparison of CPU 
time requirements for the three methods above. 

The need for the present approach could be put to question, since Subbiah et al. (1989), for example, 
have somehow managed to solve the problem using finite difference. The motivation in our work comes 
from the general preference of the finite element method for structural problems and low Reynolds 
number flows, where quite accurate and dependable general-purpose codes are possible because of the 
flexibility with boundary conditions and complicated geometries. Moreover, in spite of recent advances 



in numerical grid generation, it is still quite tedious using finite difference for the kinds of geometries 
involved in many of these applications. An alternative procedure to Subbiah's or ours, for that matter, 
involves a hybrid, with finite element in the lateral plane and finite difference in the transverse directions. 
However, this hybrid procedure is limited in the sense that some (adhoc) assumptions have to be 
made regarding the contribution of an element to the solution at a node (Ladeinde et al. 1989). Other 
advantages of our procedure can be found in the use of the Streamline Upwind Petrov-Galerkin (SUPG) 
Method to control nonlinear instability. The theory and effectiveness of SUPG are well developed (Hughes 
and Brooks 1982; Johnson and Saranan 1986; and Johnson and Szepessy 1987). Upwind methods in other 
procedures require, among other things, that one determine (explicitly) if a node is upwind or 
downwind of an element (at each time step); and these have not been analyzed. Finally, variations of 
the basic scheme provided here are easy to obtain because of the flexibility inherent in finite element 
interpolations. 515 

3 
Code validation and applications 
Because the interpolation in Eq. (3) is not the standard one for finite element, the need arises to show 
that it works. The steady state limit of Eq. (1) in which transport ofgi is due entirely to molecular diffusion 
is used, in which case, 02ff)/Ox 2 + ~2~/@2 + ~2~/~z2 = V2qb = 0. Our calculations were tested against 
analytical solutions in Carslaw and Jaeger (1959) (Eq. (9) and (lO) on page 178). The domain for the test 
is (x,y,z)~(O, 1) x (0, 1) x (0, 1). ~b = 0 on the boundary except at x =0,  1, where ~b(0,y,z) = 10 and 
~b(1,y, z) = 5 respectively. The grid used is (10 x 10 x 10). The agreement was excellent. This test not 
only shows that the interpolation in (3) works fine for thin cavities, but for thick cavities, as well. To test 
the code for advection-diffusion problems, we calculated non-isothermal flow of molten plastic in a thin 
cavity mold for injection molding of thermoplastics. Comparisons are made with the results in 
Subbiah et al. (1989), who have used finite difference with numerically-generated grid. For injection 
molding applications, the Hele-Shaw type assumption (Hieber and Shen 1978, 198o) is invoked, which 
allows the replacement of the momentum equations by a Poisson equation for pressure and algebraic 
equations (for (u, v)) that are determinable from the pressure solution. Convection of momentum is usually 
negligible in most injection and compression molding problems, beause of the large melt viscosity. 
However, convection of temperature is quite significant (Hieber and Shen 1978, 198o; Ladeinde et al. 
1989), as the P~clet number is large. Thus, the temperature distribution in injection molding can be 
modeled as in Eq. (1), with ~b being temperature, and Q, volumetric heating rate. The control- 
volume/fraction-of-fill procedure in Wang, Hieber, and Wang (1986) is used to advance melt-front. The 
injection rate and temperature are 30 cm/sec and 563 K, while the mold wall temperature, part thickness, 
melt density, specific heat at constant pressure, and thermal conductivity are T~ = 358 K, h = 0.25 cm, 
p = 0.94 g/cm 3, Cp = 2.1 x 10 7 e rgs / (g -  K), and k = 1.5 x 104 ergs/(sec.cm.K). The Carreau viscosity 
model is used: 

*1 = t/1 exp I A~(T -- 1, 
with 

r/1 = t / ~  + ( t /0 -  r/o~)[1 + (2~)2] (n 1~12. 

The model parameters are A n = 0.0, T O = 453 K, r/o ~ = 0, 2 = 1.04, n = .398, and r/0 = 1.4 x 10 4 N s / m  2. 

The theoretical fill time is 2.32 seconds. The computational mesh used in our calculation is shown in 
Fig. 2, where the arrow in the figure indicates the injection location. The mesh consists of 1130 triangular 
elements and 641 nodal points in the lateral plane; 10 three-dimensional elements are used in the thickness 
direction. 

In general, the agreement between our calculations and those of Subbiah et al. are quite good. The 
results for the time-dependent domain boundary compare quite well (we have a moving boundary 
problem), Figs. 3(a) and (b). The contour map of temperature at the centerline (z = 0), at the end of 
fill, is shown in Fig. 4 for our calculation. This also compares well with those in Subbiah et al., within the 
limits of the errors involved when interpolations are done from contours. We cannot show their results 
here because they are in color. Our calculations in Figs. 3 and 4, as well as those by Subbiah et al. were 
done using a Dirichlet boundary condition for the sidewall of the cavity. However, it is the opinion of 
some injection molding modelers (Hieber and Shen 1978) that an adiabatic condition at the sidewall 
is suitable. Comparison of our calculations with those obtained from two commercial packages 
(Professor Cengiz Altan, personal communication) showed an excellent agreement for the case of adiabatic 
sidewalls. 



516 Nv Fig. 2. The mesh for the comparison exercise with Subbiah et al. (1989). There 
are 1130 base elements, with 641 nodes. 10 three-dimensional elements are stacked 
on each base element. The arrow shows the location of the injection (gate) of 
fluid. This is a moving-boundary problem, in which case the flow front 
advances with continuous injection from the gate 
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Fig. 3. Comparison of the time-dependent location of the fluid domain boundary. The results of 
Subbiah et al. are shown in (a) and ours in (b). The theoretical fill time, based on injection rate and 
mold volume, is approximately 2.32 seconds 

In Figs. 5 and 7, we show the results of applying our procedure to simulate compression molding of 
a real truck hood, using SMC (sheet molding compound). The energy equation for this case also appears 
in the form of Eq. (1). The friction model of Barone and Caulk (1986) is used, along with a Hele-Shaw-like 
approximation. The thermophysical properties and processing conditions include a mold temperature 
of 366 K and a charge temperature of 300 K. The specific heat at constant pressure, density, and thermal 
conductivity are Cp = 1.17 x 107~ ergs/(g K), p = 1.6 g/cm 3, and k = 3.5848 x 104 ergs/(sec cm K), while 
K, the hydrodynamic friction coefficient, for the friction between charge and the mold is 1.5252 x 105g/(sec 
cm2). Press speed is .254 cm/sec and charge thickness (at highlighted nodes in Fig. 5) is 1.2 cm. 
The desired part thickness is .125 cm at charge locations and .28 cm at other locations. The mesh consists 
of 1152 triangular elements (626 nodes) in the lateral plane, with a stack of 8 three-dimensional elements 
in the transverse direction. Depth-averaged temperature using Dirichlet and adiabatic boundary conditions 
at the sidewall are shown in Figs. 6 and 7. It is pointed out that Eq. (1) is in terms of some global 
Cartesian coordinates. However, to solve this equation for a complex (thin) part with arbitrary orientations 
in space (such as in Fig. 5), each element is transformed so that the part as a whole is "laid-flat", to 
reconcile coordinates (variables, fluxes, etc.) between adjacent elements. Thus, the equations are solved 
with x and y as the local in-plane (element) coordinates, with z in the direction of the local thickness. 

The last application that we wish to discuss is the modeling of injection molding of thermosetting 
plastics. Compared to the thermoplastics case discussed above, in thermosets we have the additional 
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Fig. 4. The contour map of temperature at the centerline 
of the cavity, as observed from our calculations, using 
a Dirichlet boundary condition at the sidewalls 
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Fig. 5. The mesh for the simulation of compression mold 
filling of a truck hood. Two charges of sheet molding 
compound are used, the locations of which are shown with 
dots. There are 1152 base elements, with 626 nodes. 
8 three-dimensional elements are stacked on each base element 
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Fig. 6. The contour map of depth-averaged 
temperature, as observed from our calculations 
using a Dirichlet boundary condition at the 
sidewalls 

transport equation for the degree of cure ~, to which our procedure is applied. Details of thermoset 
modeling are available in Ladeinde and Akay (1994). Our calculations are compared with the measurements 
of Garcia et al. (1991). The model for d~/dt used in the test is (Ladeinde and Akay 1994) 

d0r 
~-~-- (/(1 + K2 o(~)(1 -- C) m~, (11) 
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Fig. 7. The contour map of depth-averaged 
temperature, as observed from our calculations, 
using an adiabatic boundary condition at the 
sidewalls 

with a viscosity law of the form 

F E 7F 0( 7a+b~ 
__ # - A,  e x p / - - / /  / 

LR= r J L%, - 

In these models, K1,K 2, mp m a, (7, and A~, E~, Rg, ~ge~, a, and b are constants, with 

K i = Ki (T)  = a i e x p ( - E i / T ) ,  i = 1, 2. 
After conversion to the CGS, which is the prefered unit in our code, the following conditions of the 

Garcia problem were imposed: 

@ = 1.840 x 107ergs/(gK), p = 1 g/cm 3, k = 1.7 x 104ergs l ( seccmK) ,  A, = 1.03 x 10 -6 gl (cmsec) ,  
E , / R  = 4967 K, ~gel = 0.65, a = 1.5, b = 1.0, Q = 2.3208 x 109 c~c~lc~t (ergs/cm3.sec), a 1 = 2.545 x 1071 sec, 

E1=6.399 x 103K, a2 = O, E2 = O, m~ O, m 2 = 2 ,  Tw=338K, Ti,jec= 333 K. 
Part dimension is (41.6 cm x 10.0 cm x 0.32 cm). Isothermal wall is used at the top. Linear injection 

rate is U 0 = 18.6 cm/sec. 

The results presented here were obtained with a mesh of (81 x 21) nodes in the (x ,y)  plane and (81 x 11) 
in vertical (x, z) plane, although grid refinement studies were carried out to establish grid independence. 
Good agreement  with the measurements  of  Garcia was observed. A sample plot of the distribution of 

temperature and e is shown in Fig. 8. 
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Fig. 8. The distribution of temperature for the Garcia test problem, at t = 2.2. Contour levels range from 

40 

333 K to 400 K. Picture is for the vertical plane (x, z). The distribution of the degree of cure ~ is similar to that 
shown here 



Task IOLM lOLl EOL 

Managing line-by-line procedure .0790 .0198 .0182 
Calculating 6 • 6 element matrix .7980 .1995 .2012 
Some overheads in 6 • 6--+2 x 2 .0736 .0184 .0178 
Condensation procedure .2224 .0556 
Pressure Calculation < .063l .0631 .0667 
MaterialProperties Calculation <.0464 .0464 .0532 
VelocityCalcnlation <.0218 .0218 .0229 
TDMA .0059 .0014 .0015 
Total < 1.704 .4260 .381 

Table 1. CPU time for the computationally- 
intensive components of our scheme. The 
unit of CPU time is seconds per time step per 
(three-dimensional) element. 
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4 
Computational speed 
In this section we discuss the CPU time requirement for the computationally-intensive components of 
our schemes, using the Garcia problem for illustration. CPU times are given in the table 1, in seconds 
per time step per element. The machine used is IBM R$/6ooo Mode153o. The management of the line-by-line 
procedure referred to in the table involves looping through the filled part of the domain, calculating 
the three-dimensional element matrix and implementing part of the condensation procedure. Also 
included in this are the assemblying of line equations, calling tridiagonal matrix solver routines, and 
updating solutions. "Overheads" refers to the EPU time spent in reconciling node numbering in (6 • 6) and 
(2 • 2) elements prior to the conversion of(6 x 6) to (2 • 2). TDMA in the table comprises of the generation 
of the elements of the tridiagonal matrix and the solution of the matrix. It is pointed out that the 
CPU times for IOLM is based on that for IOL1, assuming four iterations of the advection-diffusion 
equations per time step. 

The explicit procedure (EOL) requires more iterations of pressure to attain convergence, relative to 
IOL1 or IOLM. However, as the problem size becomes large, as in this example, the cost of condensation 
becomes quite significant, making IOL1 (IOLM) much more expensive compared to EOL. 

From the table we see that the calculation of the (6 • 6) element matrix for advection-diffusion equation 
accounts for almost 50% of the total CPU time. The procedure seems costly compared to what one would 
expect based on the speed with which the pressure equation is calculated. The CPU time for pressure 
includes the time to form the (3 • 3) element equations for the base triangular elements, as well 
as the time for frontal solution of the assembled pressue equations, including an average of three pressure 
iterations per time step. Ways to reduce the CPU time for the calculation of the element matrix for the 
advection-diffusion equation are needed. 

In terms of accuracy of the three variations of the scheme, we have had the most success with EOL, 
for large problems. As of now we cannot explain the differences in accuracy to satisfaction, but they seem 
to be strongly related to accumulated truncation errors, as IOL1 and IOLM involve many more operations 
for large problems. A single-precision arithmetic is currently being used for the calculations. 

Finally, because of an extensive data sharing in our implementation of the schemes, the extra cost 
is merely 20% for the solution of each additional equation of the form in Eq. (1) 

5 
Concluding remarks 
In this paper we have proposed a procedure for the calculation of advection and diffusion in thin cavities. 
For the applications of interest, elements with very high aspect ratios are necessary for a cost-effective 
simulation. While our fluid mechanics problem is reminiscent of shell theory in structural mechanics, 
additional complications exist, and the numerical procedure proposed here are quite different from 
shell element formulations. It is felt that the present procedure contains sufficient novelty to generate 
interest in engineers faced with the solution of flow problems in thin cavities. It might be of interest 
to the reader to know that our procedure, while being mandatory for thin cavities, is actually applicable 
to domains with any thickness. Further, with a segregated solution approach, the complete set of equations 
governing fluid flow and scalar transport could be treated in the manner presented here. The foregoing, 
in our opinion, makes the procedure reported here quite interesting because, in applications, there are 
sometimes regions for which a thin-cavity approximation does not hold, and in which a full 
three-dimensional calculation is called for. Thus, it seems worthwhile to pursue the solution of the 
complete set of Navier-Stokes, energy, and scalar equations, using the approach reported here. 
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