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High-Order Dynamic Overset Procedure Applied to Moving 
Body Calculations 

 
Kehinde Alabi* and Foluso Ladeinde.† 

Thaerocomp Technical Corp., P. O. Box 1527, Stony Brook, NY, 11790-0609 

 
This paper reports on the development and implementation of a high-order dynamic overset method for moving 
body calculations. The procedure is incorporated within a high order CFD solver system and is based on high-
order static overset methods. The dynamic high-order overset formulation for both the blanking and donor-
recipient operations are presented. Results using the high-order dynamic overset method show promise compared 
to low-order methods. 

 

Nomenclature 
αw = wing or airfoil angle of attack 
αf = flap angle of attack 
Cp = pressure coefficient 
CL = lift coefficient 
CD = drag coefficient 
C = airfoil or wing chord length 
M∞ = free stream Mach number 
P = thermodynamic pressure 
x, y, w     =  Cartesian coordinate system 
i, j, k       =  Spatial scheme indices 
ξ, η, ζ     =  Curvilinear coordinate system 
u, v, w     =  velocity components in the x, y, z Cartesian coordinate directions, respectively 

 
I. INTRODUCTION 

The overset procedure has been used to solve practical engineering problems where the geometry is irregular and 
several overlapping meshes are used to approximate the domain. Using finite-difference procedures with overset grids, 
complete aircrafts and reentry vehicles1-5 have been analyzed. In particular, the overset method is ideal for moving body 
calculations where separate grids are generated around each moving segment thus simplifying the application of motion 
of the bodies and avoiding the distortion in the grids that is a part of most single block procedures. However, overset 
methods have typically used low-order interpolation to exchange results in the common regions between adjacent 
grids.2,3 When used with low-order flow solvers, second-order interpolation may be adequate for exchanging results 
across boundaries. With high-order flow solvers, low-order interpolation procedures will reduce solution accuracy, 
particularly in the vicinity of the overset boundaries. Several authors have examined the use of high-order interpolation 
procedures6-9 and reported improved solutions. However, to our knowledge, overset procedures that retain a high-order 
of accuracy for dynamic or moving grid calculations has yet to be reported. The objective of the current paper is to 
compare the results of high-order moving body calculations combined with high-order overset method to those of low-
order procedures. 
 

Moving body calculations are required for many aerospace systems. Calculations such as those of store or payload 
separation, VTOL aircraft in take-off and landing, booster rocket or external fuel tank separation require dynamic 
calculations to accurately model the problem. Challenge problems have been issued by the United States Navy related to 
the store clearance problem during the design of air vehicles.10-17 The results of the challenge problems and subsequent 
research have demonstrated the feasibility of utilizing CFD with wind tunnel tests within the framework of a store 
certification analysis. However, as noted in the summary report,11 there is room for improvement both in the accuracy 
and the speed of obtaining moving boundary CFD results. 
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Moving boundary calculations are resource intensive as the solutions have to be evolved accurately in time – 
requiring the equivalent of multiple static calculations. Using high-order methods in the spatial and temporal schemes 
may provide the ability to utilize less grid points in the spatial models as well as larger time steps. In a previous work, 
the current authors18,19 demonstrated using the multi-disciplinary CFD solver - AEROFLO - with static high-order 
overset calculations that high-order calculations do provide a higher degree of accuracy while utilizing less grid points. 
In the current paper, we have extended the overset procedure in AEROFLO to include efficient dynamic capabilities that 
build upon the static overset features. The implementation and results of this work are presented in following sections. 
Firstly, the static, high-order overset capability within AEROFLO is summarized, and then the high-order dynamic 
procedures are presented. Results are presented only for problems with prescribed motion. The design of the overset and 
CFD procedures are developed such that the specification of motion can be prescribed, 6DOF, or constrained 6DOF. To 
this end, a high-order force moment calculation utility for overset grids was developed for AEROFLO as a separate 
module. However, details of this implementation are not included in the current report. Finally, results of high-order, 
moving grid calculations are presented for a sinusoidally pitching airfoil, a moving flap in an airfoil flap configuration, 
and static calculations for a separating store from a 3D wing. Comparisons of results of the high-order dynamic 
calculations to the equivalent low-order ones are also presented. 

 
II. Static Overset Formulation 

The overset procedure presented in this paper is discussed under three subtopics or tasks: 
• Identification of the overset nodes 
• Identification of the donors for the overset nodes 
• Interpolation and donation of solution values to the overset nodes 

Details of these tasks are provided below. 
 
A. Identification of the overset nodes 

Overset nodes are the nodes that lie at the boundary of an overlap region. The boundary of an overlap region may be 
the natural boundary of a grid or an internal boundary exposed following a hole-cutting process. For a high-order solver, 
the boundary condition at the edge may require a buffer of several nodes to maintain high-order accuracy. In such a case, 
additional buffer nodes may be treated as overset nodes. For instance, for a fourth-order solver, at least two nodes at the 
boundary will require boundary conditions, and thus, will be overset nodes at an overlap boundary. For a sixth-order 
solver, Fig. 1 illustrates the selection of overset nodes at the boundary of a hole-cut in a grid – labeled “Grid 1.” Grid 1 
overlaps a second grid, “Grid 2,” which contains the solid boundary of the object. There is a buffer of three overset nodes 
at the boundary of Grid 1 that is needed to maintain high order up to the boundary. 
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Figure 1. Overset nodes identified as a fringe of nodes at the boundary of a cut region 

 
B. Identification of donors for overset nodes 

Once the overset nodes are identified, solution results must be provided via interpolation from another grid 
(overlapping the overset node). (The boundary condition in an overset node is Dirichlett.) The process of identifying 
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donors involves a search within other grids. Then, the offset of the overset node within the donor cell is calculated. To 
determine this offset, an inverse transformation procedure is used, as described below. 
 
C. The inverse transformation procedure 

Given an overset (recipient) node located within a cell of a donor grid, shown in computational space in Fig. 2, the 
value of the corresponding offset of the overset node within the donor cell can be obtained via an iterative process. To 
accomplish this, functions relating the offset in computational and physical spaces are constructed. 
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Figure 2. Overset node enclosed within a donor cell in computation space 
 

A Taylor expansion of the functions (f1, f2, f3) relating (ξ, η, ζ) in computational space to (x, y, z) in physical space 
may be written as: 

...),,(1 +∆′+=+ iiii fff ζηξ . 
 
Using Newton-Raphson formula, we obtain  
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Solving for (∆ξ, ∆η, ∆ζ) via a matrix inversion, we obtain the following iterative procedure: 
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The functions (f1, f2, f3) in (ξ, η, ζ) may be chosen as the errors associated with the interpolation of x, y, and z:  
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where ),,( ζηξii NN =  are the basis functions for a 64 node finite element. 
 
Note that (x, y, z) are the physical coordinates whose (ξ, η, ζ) offsets are being determined within an enclosing donor 
cell. 
 
Guess values for (ξ, η, ζ) are obtained from the metrices of the transformed domain as follows: 
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Overset nodes for which a donor is not found are referred to as orphan nodes. 
 
1. Projection of Surface Grids 

Surface mismatch of overset nodes and donor cells sometimes occur close to wall boundaries due to the error in the 
linear approximation of surfaces by grids and the high aspect ratio of grids close to the wall. A virtual projection of the 
surface is carried out to ensure the accurate pairing of overset to donor cells.8,9 
 
2. Octree Structure for High-Speed Donor Searches 

To speed up the donor search process, every grid point in all blocks are initially tagged or mapped to octrees. For 
this purpose, a balanced digital tree formulation was used. This allows for a fast recursive procedure for allocating points 
to tree segments which typically requires less than 1% of the computational time for an initial donor/overset matching 
process. However, the benefits result in significant decrease in the search for a donor for an overset node as only a few 
cells, within the same tree segment (and possibly neighboring segments), need to be assessed as potential donors. 
 
D. Interpolation and donation of solution values to the overset nodes 

After the donor cells have been identified (Section 2.B), the value of the corner node of the donor cell and the offset 
of the overset node within the cells are stored. During the solution process, when boundary conditions are applied, 
interpolation is done using a high-order stencil based on the corner node of the donor cell. Although this task needs to be 
performed as part of the solver process, Tasks 1 and 2 of the overset procedure may be completed as a pre-processing 
step, except for moving boundary problems. 

(a) 2D Overlap
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δ

 
Figure 3. Interpolation stencil for an overset node 

 
Consider a non-coincident overlap of two grids illustrated in Fig. 3. The task is to determine the values of solution 

variables at a nodal point of a receptor grid using the value of known nodal points of a donor grid. The one-dimensional 
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case is shown for simplicity in Fig. 3b. For the receptor or overset node, k, a third-order interpolation utilizing a central 
stencil would use the nodes j-1, j, j+1, and j+2 of the donor grid. The equation for the Lagrange interpolation procedure 
within a unit-spaced grid12 is  
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Here, φ is the solution variable being approximated, m is the pre-determined order of the interpolant and δ is the 
distance of the interpolated point from the left-most point (j-1 in Fig. 3b) of the stencil. In three-dimensions, a tensor 
product of one-dimensional Lagrange interpolation is used. 
 

III. Dynamic Overset Formulation 
The dynamic overset procedure is developed with the objective of reducing the time for overset computation at 

every time step following the pre-processing step. This is accomplished by using the previous overset configuration at 
every time step similar to dynamic low-order methods described in other implementations.20,21 In fact, for dynamic 
calculations, the CFL restriction in time typically restricts the movement of grids such that overset nodes do not usually 
move more than a cell away from a previous donor cell at any time step. However, for robustness, we have developed the 
current procedure to accommodate movement beyond one cell by implementing a neighborhood delta formulation.  
 
A. Dynamic Donor Identification 

The algorithm for the dynamic donor identification process is presented in Fig. 4. This process is executed every 
time step in the transient calculation following the pre-processing step. 
 

For every 
overset node

Retrieve previous donor 
cell C(I, j, K)

For ∆ = 0, Ω

Determine if C or neighbor 
of C is a donor

For a structured grid,
For kk = 0, ∆

For k = -kk, kk, 2kk

For jj = 0, ∆
For j = -jj, jj, 2jj

For ii = 0, ∆
For i = -ii, ii, 2ii

Check cell Cn(I+i, J+j, K+k)

Loop

Loop

Is Cn a donor?
Yes

no

Found
donor

For every 
overset node

Retrieve previous donor 
cell C(I, j, K)

For ∆ = 0, Ω

Determine if C or neighbor 
of C is a donor

For a structured grid,
For kk = 0, ∆

For k = -kk, kk, 2kk

For jj = 0, ∆
For j = -jj, jj, 2jj

For ii = 0, ∆
For i = -ii, ii, 2ii

Check cell Cn(I+i, J+j, K+k)

Loop

Loop

Is Cn a donor?
Yes

no

Found
donor

 
 

Figure 4. Algorithm for Dynamic Donor Determination Process 
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Note that in the algorithm in Fig. 4., Ω is an integer (usually 1) that determines the maximum number of cells from a 

current donor cell that an overset node may move at any time step. The value of Ω determines the speed as well as 
robustness of the procedure. 
 
B. Dynamic Hole-Cut Procedure 

For the high-order static overset implementation,8,9 blank nodes may be specified via cookie-cutters or by an 
automatic hole-cut procedure. Dynamic versions of both methods were implemented. In particular, blanking using 
cookie-cutters is extremely fast. Consequently, procedures were added to the static overset method to allow cookie 
cutters to move similar to the grid blocks or moving bodies. The algorithms for both dynamic cookie-cutter and 
automatic cut procedures are presented below. 
 
Dynamic Cookie-Cutter Method 

For a moving cookie cutter Dcookie in 3D space, the grid point of all blocks indicated to be blanked by the cutter is 
assessed and blanked as indicated below. 
 
If cookieDkjix ∈),,(r  

 Blank node ),,( kjixr  
 
Dynamic Automatic Hole-Cut Method 

In Fig. 5a, the dynamic node blanking process is illustrated using two grid blocks. In this simplified illustration, the 
inner grid (Grid B), consisting of moving bodies causes a blanking of nodes of the grid labeled “Grid A”. Only four 
nodes and five cells of Grid A are shown for clarity. Figure 5b shows the two grid blocks after a time step and movement 
of Grid B. In this figure, two nodes have changed their blanking status; a node that was formally blank is no longer a 
blank node and one that was formally a field (non-blank) node is now a blank node. 

 
Figure 5. Movement of Blank Nodes 

 
The algorithm to dynamically determine the blanking status of the nodes of a grid block is presented in Fig. 6. 
 

In the implementation, nodes with field nodes within the Ω neighborhood are automatically stacked in an array at 
every time step. 
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For every hole or 
blank node
B(I, J, K)

with field node E 
B(I+Ω, J+Ω, K+Ω)

For ∆ = 0, Ω

Determine if B or neighbor 
of B is a blank node

For a structured grid,
For kk = 0, ∆

For k = -kk, kk, 2kk

For jj = 0, ∆
For j = -jj, jj, 2jj

For ii = 0, ∆
For i = -ii, ii, 2ii

Check if node
Bn(I+I, J+j, K+k)
is a blank node

Loop

Loop

Is Bn a blank node?
Yes

no

Flag
Bn(I+I, J+j, K+k)
as a blank node

For every hole or 
blank node
B(I, J, K)

with field node E 
B(I+Ω, J+Ω, K+Ω)

For ∆ = 0, Ω

Determine if B or neighbor 
of B is a blank node

For a structured grid,
For kk = 0, ∆

For k = -kk, kk, 2kk

For jj = 0, ∆
For j = -jj, jj, 2jj

For ii = 0, ∆
For i = -ii, ii, 2ii

Check if node
Bn(I+I, J+j, K+k)
is a blank node

Loop

Loop

Is Bn a blank node?
Yes

no

Flag
Bn(I+I, J+j, K+k)
as a blank node

 
Figure 6. Algorithm for Dynamic Blanking Determination Process 

 
 

IV. The CFD Procedure 
 

The CFD equations in the high-order solver are those of the compressible Navier-Stokes equations. 
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and (U, V, W) are the contravariant velocity components defined as 
 

wvuWwvuVwvuU zyxzyxzyx ζζζηηηξξξ ++=++=++=       ,       , . 
 

In the above equations, (u,v,w) are the velocity components in the Cartesian coordinate directions (x,y,z), ρ is the 
density, and p is the pressure. E is the total energy, which can be written as 
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The viscous terms in Eq. 1 are 
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By using the implicit, approximately-factored finite-difference algorithm of Beam-Warming and employing a 
Newton-like sub-iteration, we have the following algorithm: 
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where  
11 , .

1
i p pU U Uφ

φ
+= ∆ = −

+  
 
and superscripts “p” and “n” denote the sub-iteration steps and the outer-loop time steps, respectively.  In the above 

equations, (ξ, η, ς) are the curvilinear coordinate directions and st∆ is the time step for the sub-iterations. Either a first or 
second-order temporal accuracy can be specified in the above iterative procedure by selecting 0φ =  or 1/ 2φ = . 
For 1p = , p nU U= and pn UU =+1  at convergence in p. 
 

Note that the default spatial discretization procedure in AEROFLO is based on high-order differencing, while the 
standard, simple (low-order) schemes are available as options. For the former and assuming subsonic flows, we use the 
compact Padé approximant method for spatial differencing.22 Consider the differencing of a flow variable u along the ξ 
direction (that is, ξ∂∂ /u ). The problem is to utilize the known iu values to estimate the derivative iuu ξ∂∂≡ /' at each 
mesh point. In the interior, a centered formula is employed: 



 
American Institute of Aeronautics and Astronautics 

9

ξξ
αα

∆
−

+
∆
−

=++ −+−+
+− 24

1122'
1

''
1

iiii
iii

uu
a

uu
buuu  

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−⎟
⎠
⎞

⎜
⎝
⎛

−−⎟
⎠
⎞

⎜
⎝
⎛

.6 ,4:
9
1,

9
14,

3
1

4 ,3:0,
2
3,

4
1

= b) a, , (
orderthpt

orderthpt
α  

 
 

 
For high-order differencing of flow fields with shock waves, the weighted essentially non-oscillatory (WENO) 

procedure23 is used, which can be summarized as follows, if we consider the ξ direction in Eq. (9) as an example: 
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with rω as the normalized weights, )( rrr ωωω = and dγ are constants, ε is a robustness factor that prevents the occurrence 
of a zero denominator, while βγ  is a smoothness indicator, which is related to the undivided difference. The positive sign 
indicates upwind, while negative implies downwind. We set 1410 −≈ε and use spectral radius from coupled equation 
systems to compute the value of α, as opposed to a component-wise procedure to determine this parameter. Note that crm 
are coefficients of Lagrange interpolation formula.8 
 
 

IV. High Order Dynamic Boundary Conditions 
The boundary conditions in AEROFLO are implemented to the same high-order as the spatial schemes.19,22 The 

dynamic boundary conditions are derived from the static ones except for modifications to moving wall boundary 
conditions including no-slip and slip conditions. For a no-slip or wall boundary, the boundary itself has a finite velocity 
value and setting the velocities to zero is not accurate. Generalized equations for the boundaries for slip and no-slip wall 
are presented below: 

 
A. No slip boundary condition 
To maintain the no-slip boundary conditions, the velocity of the fluid at a moving boundary must match the velocity of 
the boundary. For a boundary which has the surface equation 

 
0=+++ DCxByAx ,       (10) 

 
the boundary conditions for the variables, u, v, and w, will be given by zwyvxu &&& === ,, . zyx &&& ,,  are either specified or 
calculated from the dynamic solution between the grids at two time steps. 

 
 The pressure is derived from the forces on the boundary due to this movement 

 

∫
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where a is the acceleration of the surface. For ξ = constant, η = constant, ζ = constant surfaces, this equation becomes: 
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      (11) 
 

zyx &&&&&& ,,  are either specified or calculated from the dynamic solution between the grids at two time steps. The density 
is calculated similar to the static case in 4.2. 

 
B. Slip boundary condition 

The form of the density and pressure are the same as above. However, the slip velocities can be calculated by one of 
the following equations (derived in the same manner as for the static equivalents): 
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where  
zCyBxAN &&&& ++= . 

 
Only one of the three equations is needed. For boundaries aligned with the z-plane, for instance, the only non-zero 

value of A, B, and C, is C and Eq. (12) must be used. 
 
To maintain high-order accuracy, at least two layers of nodes at the boundaries are set to the boundary condition 

values calculated according to equations. The time dependent metric terms were computed using second order for the 
high-order calculations and first-order for the low-order calculations as follows. Note that the high-order formulation 
requires the storage of an additional set of coordinates for the moving grid in time. 
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V. Results 
The high-order dynamic overset procedure was used to simulate a pitching airfoil. Results were compared to low-

order methods. In addition, the procedure was also used to calculate the moving flap in an airfoil/flap configuration. 
Finally, a 3D calculation of a store separating from a 3D wing was commenced. The static calculations are presented in 
the current abstract.  
 
A. Sinusoidally Pitching Airfoil 

The airfoil has a NACA0012 profile and the sinusoidal pitch was prescribed by the equation 
 

)sin()( 0 tt m ωααα +=  
 
where ω is related to the reduced frequency κ by 
 

∞

=
U

c
2
ωκ . 

 
In non-dimensional form, this can be written as 
 

)2sin()( 0 tMt m κααα ∞+=  
 
where the non-dimensional symbol used to represent time, t, has simply replaced the dimensional one. 
 

The calculations were completed for the case CT1 in the AGARD Report: Compendium of unsteady aerodynamic 
measurements.23,24 with the following parameters: 

M∞  = 0.6 
αm = 2.89o 
α0 = 2.41o 
κ = 0.0808 

The grid used for the airfoil contains 245 x 64 nodes. For the low-order calculations, the MUSCL scheme was used 
for spatial differencing while the Beam-Warming procedure for time integration. For the high order calculations, the 
WENO scheme was used for spatial differencing while the 4th-order Runge-Kutta procedure for time integration. A time 
step size of 0.02 was chosen with seven sub-iterations each sub-iteration with a size of 0.0005. The results are presented 
in Fig. 7 after about 6 cycles. These results include the lift and moment coefficients and show high-order calculations 
that are in closer agreement with experimental values. 
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Figure 7. Low and high order results of CL and CM for sinuisoidally pitching airfoil calculations compared to 

experiments. 
 
 



 
American Institute of Aeronautics and Astronautics 

12

B. Moving Flap of an Airfoil/Flap Configuration 
Calculations were done for flow past an airfoil/flap combination. The physical domain is illustrated in Fig. 8. The 

dimensions in the figure are in inches. The airfoil has a NLR(1)-0015 profile while the flap has a NACA 64(1)-112 
profile. The model is two-dimensional. Static calculations were done at Mach number, M∞ = 0.25, wing angle of attack, 
αw = 0o, and three flap angles, αf = 0o, 10o, and 20o. Dynamic calculations were based on a flap movement from 0o to 20o. 
For the low-order calculations, the MUSCL scheme was used for spatial differencing while the Beam-Warming 
procedure for time integration. For the high order and static calculations, the compact scheme was used for spatial 
differencing while the 4th-order Runge-Kutta procedure for time integration. The calculations are based on the Euler 
equations. The airfoil chord length, C, was used as the length scale. 

 
Figure 8. Airfoil/Flap Configuration. 

 

x/C

y/
C

-20 0 20 40
-30

-20

-10

0

10

20

30
(a)

       x/C

y/
C

0 0.5 1-0.4

-0.2

0

0.2

0.4

0.6

(b)

 
Figure 9. Grids at 30o flap angles after rigid transformations (a) Airfoil and flap grid after scaling and rotation, 
(b) Close up view. 
 

The airfoil and flap grids were generated separately and are shown in Fig. 9. The grids were assembled as a pre-
processing step transforming appropriately for the different flap angles and position. Following the transformation, hole 
cuts were made between both grids using the overset procedures and calculations were performed to obtain the results for 
the full domain (airfoil and flap). The grids following the overset assembly is shown in Fig. 10. 251 x 68 grid points 
were used in the airfoil grid and 121 x 53 gird points were used for the flap grid. A time step size of 0.05 was used with 
five sub-iterations of 0.0005. The total motion was imposed over a total non-dimensional time of 500. 
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Figure 10. Overset grids following hole cut. Notice the number of fringe nodes and between the grids required to 
perform high-order interpolation between the grids. 
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Figure 11. Snapshots of P/ρU2 contours at different times in the moving flap calculations. 

 
Snapshots of the high-order solutions at selected flap angles are presented in Fig. 11. The results of the dynamic and 

static calculations are shown in Fig. 12 for the lift and drag coefficients. The high-order calculations appear to provide 
results that are closer to the static one. Additional analysis is in progress. 
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Figure 12. Comparisons of high and low-order moving flap calculations 

 
C. Store Separation from 3D Wing 

Static calculations were completed for flow past a wing store combination. The physical domain is illustrated in 
figure 13. The dimensions in the figure are in inches. The wing has a NACA 0012 profile and is three-dimensional while 
the store is an ellipsoid. 

 

 
 

Figure 13. Wing/Store Configuration. 
 
The wing grid uses an O-grid with 249 x 55 x 41 grid points. The store grid is an axisymmetric grid with 51 x 31 x 

41 grid points. The grids are shown in Figs. 14 and 15. The grids were generated separately and assembled in the solver 
using grid transformation procedures to appropriately scale and translate them to the required relative positions. The 
wing chord length, C, is used as the length scale. The overset procedure was used for the full domain calculations to 
supply boundary values and convey solutions between both grids. Figure 16(a) shows the surface grids after assembly 
while Fig. 16(b) shows a section through the grids after the overset procedure was completed. 
 

Calculations were completed at Mach number, M∞ = 0.8, wing angle of attack, αw = 0o, and three store separation 
distances, s/C = 0.25, 0.5, and 1.0. The partially blanked grids (focusing on the store grid) for the three separation 
distances are presented in Fig. 17. The calculations are based on the Euler equations and utilize the WENO scheme for 
spatial differentiation and fourth-order Runge-Kutta procedure for time integration.  
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a) b) 

Figure 14. Wing mesh (a) Full grid, (b) Plane section through grid at Z = 1.0. 
 

  
a)      b) 

Figure 15. Store mesh with every other grid point removed (a) Section of full grid, (b) Axisymmetric section 
through grid. 

 

  
(a) (b) 
Figure 16 Combined grid (a) Surface grid of the wing and the store with every other grid point removed (b) 
Plane section at z/C = 1.0 for s/C = 0.25 showing overset nodes of both grids. 
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Figure 17 Overset computational domains (a) S/C = 0.25, (b) S/C = 0.5, (c) S/C = 1.0. 

 
Figures 18 shows the lift coefficient, CL, and drag coefficient, CD, for the static calculations at the three separation 

distances. The results show decreasing total lift coefficient with store separation distance and a slight increase in the total 
drag. These results were compared to dynamic calculations of the store motion from s/C = 0.25 through 1.0. A time step 
size of 0.005 was used with five sub-iterations of 0.0004. 
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Figure 18. Drag coefficient variation with store separation distance: (a)  S/C = 0.25, (b)  S/C = 0.5, (c)  S/C = 1.0 for 

static calculations. 
 
The results for the static calculations were compared with those of low-order and high-order dynamic calculations for the 
same store moving at a non-dimensional speed of 0.15 from s/C = 0.25 through 1.0. The results are also presented in 
Figure 18. Similarity of both results can be observed. These calculations were completed without any measure of the 
relative superiority of the high-order calculations. Future work is intended to focus on this aspect by carefully selecting 
problems for which the performance of both procedures can be clearly compared with known outcomes. 
 

V. Conclusions 
The current paper presents a procedure for high-order overset calculations for moving grids. Algorithms for 

extending previously developed high-order static overset formulation to a dynamic one were presented for both the donor 
search process and the hole cut or blanking procedure. Results comparing low and high-order dynamic overset 
formulations are presented to show the potential for accurate high-order overset calculations. However, the effect of the 
high-order formulation for time-dependent metrices can not be determined from the initial applications tested which 
were based on prescribed motion. Future work will focus on additional testing and analysis of the performance of high-
order dynamic procedures compared to low-order ones, as well as evaluating the potential for savings in computational 
resources by analyzing the accuracy of high-order calculations using coarser grids and larger time step sizes. 
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