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Simulation and Analysis of Rarefied Parallel Interacting 
Sonic Jets 

Wenhai Li* and Foluso Ladeinde† 
Mechanical Engineering Department, SUNY at Stony Brook, Stony Brook, NY 11794-2300 

The interaction effects between two rarefied parallel sonic jets are studied. When the 
flow is in the free or near-free molecular regime, in which case the interaction effects are 
weak, the density profile of the flow field can be approximated by the summation of the 
density profiles of the individual jets using an asymptotic model developed by Ashkenas and 
Sherman.1 This explains the existence of the self-similarity of the flow field for the density 
profile, which was discovered by Zhu and Dagum.2⁻4 For the flow in the continuum or near-
continuum regime, in which case the interaction effects are strong, self-similarity does not 
hold and interaction shock waves are formed. To analyze the influence of the interaction 
shock wave, a modified Penetration Knudsen Number has been introduced. It is shown that 
the existence of the interaction shock wave significantly decreases molecular penetration. 
This effect is shown in the density profiles from the DSMC calculation. The translational 
non-equilibrium in the interaction region is also analyzed from the DSMC results. 

Nomenclature 
 
cr = relative velocity of molecular pairs 
c’ = molecular thermal velocity 
D = diameter of jet orifice 
d = diameter of gas molecule 
L = separation distance between the orifices of two jets 
lref = reference length 
Kn = Knudsen number 
Knp = penetration Knudsen number  
n = number density 
r = polar distance 
T = temperature 
t = time 
umax = maximum velocity 
Zr = rotational collision number 
γ = specific heat ratio 
δ = height of shock wave front 
θ = polar angle 
λ = molecular mean free path 
ρ = density 
σT = total collision cross-section 
τc = molecular mean collision time 
φ = angle between shock front and x-axis 
χ = density ration in front of  and behind of shock front 
Subscripts 
0 = properties at orifice exit 
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s = properties under stagnation condition 
t = overall flow field properties 
Superscripts 
* = properties with the influence of shock waves. 
 

I. Introduction 
ITH the rapid development of space technology, a lot of emphasis has been placed on the study of the 
interaction between rarefied free jets. Various jet interaction phenomena exist in the design of spacecraft, one 

example being multi-nozzle rockets (Fig. 1). The rockets are always equipped with two or more nozzles to provide 
large impulse and stability. Because of the high altitude, the pressure is low, which causes the plumes from each 
nozzle to have a large radial extent. Therefore, an interaction between the neighboring plumes may occur.  
Another example is the spacecraft's Orbiter Reaction Control System (RCS), which always comprises of many 
primary and vernier engines. The RCS can provide the thrust for altitude maneuvers and small velocity changes 
along the orbiter axis by firing the selected engines. If adjacent engines are fired simultaneously, an interaction 
between the two jets can occur. The jet interaction phenomena can also be seen in a satellite's Altitude Control 
System (ACS), which is used to control the altitude of the satellite. This system is generally formed by an array of 
small thrusters. Because the size of the satellite is small and the plume size is large in high altitude, jet interaction 
between the adjacent plumes can be observed. 

 

nozzles

Interaction region

nozzles

Interaction region  
 

Figure 1. Jet interaction in multi-nozzle rocket 
 

 The interaction between the jets can greatly change the flow profile, the mixing pattern of the products of 
combustions, and the dynamics of jet impingement. These phenomena can cause a lot of difficulties in the design of 
a spacecraft. Therefore, jet interaction is important and needs to be investigated in detail. When the interactions take 
place in the continuum regime, the problem can be solved using the classical continuum method, such as the 
solution of the Navier-Stokes equations. However, when the interactions take place at a high altitude, where 
rarefaction effects become significant, the continuum method will not be applicable. The problem needs to be 
attacked from the standpoint of rarefied gas dynamics (RGD). 

Only a few studies have been carried out on rarefied interacting jets. Koppenwallner and Dankert5⁻6 first studied 
the scaling laws for rarefied jet interaction and suggested a parameter, which is called the Penetration Knudsen 
number, pKn , to characterize the plume-plume penetration effects. Soga7 and Niimi8 observed the flow field of the 
interacting jets in experiments using the electron beam and planar laser-induced fluorescence, respectively. Zhu and 
Dagum2⁻4 first simulated the rarefied jet interaction with the Direct Simulation Monte Carlo (DSMC) method. 

II. Flow in the free or near-free molecular regime 
The study of plume-plume interaction is based on the theory of a single rarefied plume, which can usually be 

predicted by an analytical formula. The use of asymptotic models to predict the rarefied jet flow field is common. 
These models are based on the assumption5 that in the far field of the plume, the flow velocity has reached its 
adiabatic speed limit maxu , and that all streamlines are radial and straight, as if they emanate from the same source 
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point in the orifice exit (Fig. 2). Based on the continuity of mass, the flow density attenuates along the streamline by 
21/ r  and it is given by 

 ( )
2

/ 2s s

n DA f
n r

ρ θ
ρ

⎛ ⎞= = ⋅⎜ ⎟
⎝ ⎠

, (1) 

where sρ  and sn  are stagnation density and number density, r  and θ  are polar distance and angle to the orifice 
exit and D is orifice diameter. A is a constant determined by the gas species and ( )f θ   is a plume angular density 
decay function, which is given by 

 ( )
max

cos
2

kf π θθ
θ

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠
, (2) 

where maxθ  is an angular scale. k  is a constant that depends on gas specific heat ratio γ . Different researchers have 

used different values for k . Ashkenas and Sherman1 used 2k = , Albini9 and Hubbard10 used k=1/( -1)γ , while 
Boyton11 suggested k=2/( -1)γ . 
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Figure 2. Asymptotic model for one rarefied free jet 
 

When the jets' stagnation Knudsen Number sKn  is very small or the separation distance ( )/L D  between the 
two jets' orifices is very large, the flow is in the free molecular regime and the interaction between the two jets can 
be neglected. In these cases, the overall number density profile of the flow field can be evaluated as the sum of the 
number density of all the plumes, such that 

 ,1 ,2total jet jetn n n= + , (3) 

where totaln , ,1jetn  and ,2jetn  are, respectively, the total number density, number density of jet 1, and number density 
of jet 2 (shown in Fig. 3). Substituting Eqn. (1) into Eqn. (3), we can obtain the expression for the density profile 
along the symmetry axis ( ),0,0x  as 

 
( ) ( ) ( )

2 2 2
2

max

/
2 2 sin cos 2

/ 2 2
t k

s

x D D D DA f A A g
r L L

ρ π θθ θ θ
ρ θ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

, (4) 

where 
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 1 /arctan
2 /

L D
x D

θ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (5) 

and  

 ( ) 2

max

cos sin
2

kg π θθ θ
θ

⎛ ⎞
= ⋅ ⋅⎜ ⎟

⎝ ⎠
. (6) 

Zhu3,4 observed a self-similar phenomenon based on ( )2/L D  in the interaction region. This can be illustrated from 

Eqn. (4) with the fact that ( ) ( ) 2/ /L Dt sρ ρ −∝ . 
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Figure 3. Interacting jets for sKn →∞  

III. Flow in the continuum or near-continuum regime 

When the flow is in the continuum or near-continuum regime, the interaction effects are strong and the above 
asymptotic model is not directly applicable. For this purpose, several previous studies have been carried out to 
characterize plume-plume interaction. Koppenwallner5 derived the scaling laws for rarefied jet interaction and 
introduced a parameter to evaluate the molecular penetration between the two plumes. The parameter is called the 
Penetration Knudsen Number, pKn . Here, we briefly recall the definition of pKn  following the 1984 paper of 
Koppenwallner. pKn  is defined as follows: 

 p
p

ref

Kn
l
λ

= , (7) 

where pλ  is the mean distance of plume 1 molecules moving through plume 2 flow field and refl  is selected as the 
distance from the symmetry plane to the centerline of plume 2 (shown in Fig. 4). 
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Figure 4. Definition of the Penetration Knudsen Number in rarefied jet interaction 
 

The expressions for refl  and pλ  are given as5 

 / 2
sinref
Ll
θ

=  (8) 

and12 

 
1

,12
12 2 ,12

1 '
r

p T

c
n

c
λ λ σ

−
⎛ ⎞

= = ⋅ ⋅⎜ ⎟
⎝ ⎠

, (9) 

respectively, where 2
,12T dσ π=  is the total collision cross-section between the two plume molecules, d is molecular 

diameter, and ,12rc  is the relative velocity between the molecules from the two jets, which is calculated as5 

 ,12 max2sinrc uθ= ⋅ . (10) 

The mean thermal velocity, 1'c , of the jet molecules can be defined as12 

 1 0
2' 2c RT
π

= , (11) 

where 0T  is the temperature at the orifice exit. For sonic free jets, maxu  is the adiabatic speed limit given by13 

 max 0
2

1
u RTγ

γ
=

+
. (12) 

Eqn. (9) can now be expressed in the form 

 2

1 1/1
sinp

id n
γ

λ
π θ π

+
=

⋅
, (13) 

where in  is the number density of one primary jet, which can be evaluated from Eqn. (1). Substituting Eqns. (8) and 
(13) into Eqn. (7) and simplifying, the Penetration Knudsen Number, pKn , can be obtained as 

 ( ) ( ) ( )2 2

2 2 1 1 11
sin sin

s s
p

Kn KnL LKn
A D B Df f

θ
γ θ θ θ θπ

= + ⋅ ⋅ ⋅ = ⋅ ⋅ , (14) 
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where ( ) 12/ 2 /s s sKn D d n Dλ π
−

= =  is the Knudsen number at stagnation conditions based on the orifice diameter 

D , and B  is a constant including all constant terms related to γ . pKn  is a function of θ  and can be converted to 
the following form: 

 
( )

( )2

max

1 1

sin cos
2

k

Knp
Kn gLs

B D

θ

θπ θθ
θ

= =
⎛ ⎞

⋅ ⋅⋅ ⎜ ⎟
⎝ ⎠

. (15) 

Eqn. (15) shows that pKn  is also a function of ( )g θ , which is defined in Eqn. (6). This implies that pKn  is a 
parameter that characterizes the momentum penetration between the two jets. 

Although the concept of Penetration Knudsen Number defined by Koppenwallner can be used to characterize the 
molecular penetration, this definition cannot be used in the continuum or near-continuum regime because it is based 
on the assumption that there is no interaction shock wave in the flow field. This assumption is inaccurate due to the 
fact that the interaction shock waves are formed8 and play a critical role in molecular penetration when interaction 
effects are strong. The effects of the interaction shock wave are depicted in Fig. 5. Before encountering the shock  

 

ooooooo

z

x

o

λpλp

λ*
pθ

θ*

δ

Weak shock front

ooooooo

z

x

o

λpλp

λ*
pθ

θ*

δ

Weak shock front

 
 

Figure 5. The influence of a shock wave 
 

wave, the streamlines are in the radial direction and the density decays as 21/ r  along with the streamline. After 
going through the shock wave, both the stream direction and the flow density are changed. To evaluate this change, 
one needs to know the geometry and the strength of the shock front. Based on the assumption that the geometry of 
the shock front is not affected by the strength of the shock, Gidalevich14 introduced an expression for the geometry 
of the shock front ( )xδ , which is given by 

 
( ) ( ) ( )( )1/ 22 22

min min min1 1 2

2

x x Ld
dx L

χ χ χ δδ
δ

− − − − −
=

−
, (16) 

where ( ) ( ) ( )/x n x n xχ ∗=  is the density ratio across the shock front, and n  and n∗  are the density in front of and 
behind the shock front, respectively. When the shock wave is very strong, which means that the Mach number 
before the shock front goes to infinity, χ  has the minimum value ( ) ( )min 1 / 1χ γ γ= − + . ( χ  is a value between 

minχ and 1.) When the shock front is stronger, χ  becomes smaller, and vice versa. The direction of the streamline is 
also changed from θ  toθ ∗ . Using Rankine-Hugoniot relation, the direction of the streamline behind the shock front 
is given by 



 
American Institute of Aeronautics and Astronautics 

 

7

 
( )

( )

1tan tan
arctan

1tan tan

θ φ φ
χθ

φ θ φ
χ

∗

⎛ ⎞+ −⎜ ⎟
⎜ ⎟=
⎜ ⎟+ +⎜ ⎟
⎝ ⎠

, (17) 

where ( )arctan /d dxφ δ=  is the angle between the tangent to the shock front and the x-axis. θ ∗  is a value between 
0 and θ . When the shock is very strong, the direction of the streamline after the shock front is changed to the 
direction parallel to the x-axis, which means that * 0θ = . 

From Eqn. (1) and the fact that the radius is ( )/ 2 / sinL δ θ− , we can obtain the number density before the shock 
front as 

 
( )

2 2

2

sin
4 / 2

s
Dn n A f
L

θ
δ

= ⋅
−

. (18) 

Note that the mean free path pλ
∗  can be expressed in the form¹² 

 
1

,12
1'
r

p T
c

n
c

λ σ
−∗

∗ ∗
∗

⎛ ⎞
= ⋅ ⋅⎜ ⎟
⎝ ⎠

. (19) 

The superscript ‘ ∗ ’ implies the existence of an oblique shock wave. To simplify the problem, we assume that the 
number density behind the shock front remains constant and 'c  is also unchanged. We can obtain the equation for 
the number density behind the shock front as 

 
( )

2 2

2

1 sin
4 / 2

s
n Dn n A f

L
θ

χ χ δ
∗ = = ⋅ ⋅

−
. (20) 

We can also compute the relative velocity between the molecules from the two jets: 

 ( ) ( )( )*
max max2 sin 2 cos sin sin cosrc u uθ θ φ φ χ θ φ φ∗ = = + − + . (21) 

Substituting Eqns. (20) and (21) into Eqn. (19), we can write the expression for pλ
∗  as 

 
( )2

2 2

2 / 2
sinp

s

L
D n A d f

δ χ
λ

π θ
∗

∗

− ⋅
=

⋅ ⋅
. (22) 

The mean free path with and without the shock wave are related as 

 ( ) ( ) 2
sin1

/ 2 sinp p

x
x

L
δ θλ λ χ

θ
∗

∗

⎛ ⎞
= ⋅ ⋅ − ⋅⎜ ⎟

⎝ ⎠
, (23) 

where pλ  is determined from Eqn. (9). Recall the definition of the Penetration Knudsen Number in Eqn. (7) and 
choose the reference length as 

 *

/ 2
sinref
Ll
θ

∗ = . (24) 
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Therefore, a modified Penetration Knudsen Number can be defined as 

 ( ) ( ) ( ) ( ) 2

* 1
/ 2

p
p p

ref

Kn Kn
Ll

λ δ θ
θ θ χ θ

∗

∗

⎛ ⎞
= = ⋅ ⋅ −⎜ ⎟

⎝ ⎠
, (25) 

where the “unmodified” pKn  is defined in Eqn. (14). When an interaction shock wave exists, 1χ <  and / 2Lδ < , 

so that p pKn Kn∗ < , which means that the shock wave reduces the molecular penetration. 

IV. Numerical Method 
A three-dimensional DSMC code has been developed for the simulation of the rarefied gas flows. The DSMC 

method has been recognized as a powerful technique capable of predicting rarefied gas flow in the regimes where 
neither the Navier-Stokes nor the free-molecular approaches are appropriate. In this study, the DSMC algorithm is 
built around the same physical concepts as described by Bird.12 

Fig. 6 shows the three-dimensional computational domain for the simulation. The stagnation Knudsen number 
sKn  used are 0.0003, 0.003, 0.03, 0.3, 3 and 10. Three separation distances /L D = 1.5, 3, 6 are investigated for 

each sKn . The cell dimensions need to be smaller than the local mean free path Lλ  for accurate results. However, 
both Hass15 and Usami16 have shown that a coarser network is still acceptable for the general study of the flow field 
structure. Because the local mean free path Lλ  increases rapidly along the flow streamline, finer grids are only 
required in a small region near the orifice exit. The domain must be large enough so that the influence of interacting 
jets does not reach the downstream boundary. For the cases of  /L D = 1.5, 3 and 6, the domain geometry is set to 
15D×7D×5D, 15D×6D×6D and 15D×4D×8D, respectively. The domain size is determined by the following 
criterion: when L/D is small, the interaction effects are strong and more molecules are squeezed, which results in a 
rapid expansion rate in the y-direction. In this case, the computational domain needs to be enlarged in the y-direction. 
The maximum number of cells used in this study is approximately 2×10⁶ for the case of small stagnation Knudsen 
Number ( 0.0003sKn = ). The sub-cell method,12 whereby each cell is subdivided into a 2×2×2 array of sub-cells, is 
used to increase accuracy. 
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Figure 6. Computation geometry for the interacting jets 
 

The molecular collisions are modeled using the Variable Soft Sphere (VSS) molecular model12 and the energy 
exchange between kinetic and internal energies is calculated with the Borgnakke-Larsen model,12 in which a fixed 
rotational collision number of 5rZ =  is used. The vibrational relaxation is not considered because the expansion is 
at room temperature and vibrational degrees of freedom are not active during the expansion process due to the 
relatively large values of the vibrational relaxation time.17 The orifice plane (x=0) surface is assumed to be a 
diffusion surface. Our code uses Bird's No-Time-Counter (NTC) scheme.¹² The molecular motion and 
intermolecular collision are decoupled during a small time interval. To comply with the physics, the time step must 
be smaller than the average collision interval. The program runs for several steps until it reaches steady state, after 
which it samples the flow properties at each time step size. To minimize statistical scattering, a large number of 
simulated molecules and a longer computation beyond the steady state are required. The maximum number of the 
simulated molecules used in the calculation is approximately 4×107. More than 1×105 computation steps were 
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carried out after the steady state has been reached. The length of the time step is set to be 0.8 ct t∆ = , where ct  is the 
molecular mean collision time under stagnation conditions. 

The stagnation temperature and pressure of the jets are fixed as 227.5K and 870Pa, respectively. The temperature 
at the orifice plane ( 0x =  plane) is set to the jet's temperature at the orifice exit. The velocities of the molecules 
entering through the orifice are generated using Maxwell distribution, with sound speed normal to the upstream 
boundary. The downstream boundary is assumed to be in vacuum. The DSMC calculations were conducted under 
various conditions.  

V. Results and Discussions 
Figs. 7, 8, and 9 show the normalized density, translational temperature, and rotational temperature contours in 

the x-z and x-y symmetry planes for 0.003sKn =  and / 3L D = . In this case, the flow field is in the continuum 
regime. Jet interaction is strong and we can clearly observe an interaction region that is formed near the symmetry 
plane from the x-z plane contours. We can also observe that the interaction region undergoes an expansion in the y-
direction. Compared to the expansion in the z-direction, we can see that the interaction region expands at a faster 
rate in the y-direction. The reason is that in the planes parallel to the y-z plane, the z-momentum is nullified due to 
the interaction and only the y-momentum remains. The translational temperature contour has a similar pattern as the 
density contour except in the vicinity of the orifice plane. This is due to the fact that the orifice plane is assumed to 
be hot (has the same temperature with flow in the orifice exit). We can observe that the rotational temperature 
distribution is significantly different from that of the translational temperature. This is because the rotational 
temperature in the primary jet rises at a higher off-center angle, while the translational temperature does not behave 
in the same manner. Figs. 10, 11, and 12 depict the normalized density, translational temperature, and rotational 
temperature contours for 0.03sKn =  and / 3L D = . In this case, the flow is in the near free molecular regime. 
Compared to the case for 0.003sKn = , the interaction region is not clear in the density and rotational temperature 
contours, but we can still observe a shorter jet interaction region in the translational temperature contour. From the 
contours on the x-y plane, we can see that the rate of expansion in the z-direction has been decreased, compared to 
the case with 0.003sKn =  

In Fig. 13, the density profiles for sKn →∞  ( /L D = 1.5, 3, and 6) that are calculated using Eqn. (4) are 
compared to the DSMC results for the case sKn =10. The constants in Eqn. (4) are chosen as: 

 max0.56, 3 90A k and θ= = = o  (26) 

The comparison shows that in the free molecular regime, the asymptotic model agrees with the DSMC results when 
/L D = 3 and 6. For /L D = 1.5, the DSMC results show larger values relative to the results obtained using Eqn. (4). 

The reason is that when L/D is small, the interaction occurs in the near field of the primary jet, where molecules 
exhausting from the primary jet have not reached the maximum velocity maxu  and thus, the one-jet asymptotic 
model is not appropriate. Therefore, the relatively slower velocity leads to a larger density, consistent with the 
continuity equation. 

    Figs. 14 through 17 give the scaled density profiles along the ( ),0,0x  axis for sKn = 0.3, 0.03, 0.003 and 

0.0003, respectively. In the scaled plots, / sρ ρ  is scaled by ( )2/L D  and /x D  by ( ) 1/L D − . When sKn  is large, we 
see that the self-similarity phenomenon observed by Zhu still exists. However, even for a very large sKn , the 
density profile for /L D = 1.5 is higher than what the scaling law predicts. It can be explained by the failure of the 
one-jet asymptotic model in the near field. For /L D = 3 and /L D = 6, the scaling law works better than for 

/L D = 1.5 for the large sKn  cases. When sKn is small, such as 0.003sKn =  and 0.0003sKn = , there is a larger 
difference between the scaled density profiles. This can be explained by the existence of strong interaction shock 
waves in the interaction region. 

    Figs. 18 through 20 give the density profiles along the ( ),0,0x  axis for different values of sKn  when 
/L D = 1.5, 3.0, and 6.0. These figures show that as sKn  decreases, the density in the interaction region increases. 

This agrees with the fact that when sKn  is small, the interaction effects become more significant and there are more 
molecules whose z-direction momentum is nullified and that are compressed in the interaction region. Compared 
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with the differences between the curves in the near free molecular regimes (i.e., between sKn = 3, 0.3 and 0.03), the 
differences between the curves in the near continuum regime (i.e., between sKn = 0.03, 0.003, and 0.0003) are very 
large. This is also due to the existence of the interaction shock waves. As shown in Eqn. (25), the shock greatly 
decreases the molecular penetration and compresses more molecules in the interaction region. 

    Figs. 21 through 23 give the x-, y- and z-direction translational temperature profiles for sKn = 0.03, 0.003, and 
0.0003. It is found that when sKn  is large, non-equilibrium effects become significant, due to insufficient molecular 
collisions, which leads to the larger separation in the translational temperatures in different directions. From these 
plots, we observe that as sKn  becomes smaller, the y-direction translational temperature decreases, while x- and z-
direction translational temperatures increase. The reason is that when the interaction effects become stronger, 
molecules are more likely to lose y-direction velocity and to increase both the x- and z-direction velocity.   
  

VI. Conclusion 
The interaction effects between parallel jets are analyzed and simulated from the free molecular regime to the 

continuum regime. The effects of the jet’s stagnation Knudsen number sKn  and the separation distance between the 
two jets ( )/L D  is examined using DSMC calculations. The self-similarity of the flow in free molecular regime that 
was observed by Zhu can be explained by the asymptotic model developed in this paper. This self-similarity is only 
valid for large values of sKn  and L/D. For the flow in the continuum or near continuum regimes, the interaction 
shock waves greatly decrease the molecular penetration. This is analyzed in this paper by introducing a modified 
Penetration Knudsen Number, pKn∗ , based on Koppenwallner's definition.  
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Figure 7. Normalized density contour in a) x-z and  
b) x-y symmetry planes for sKn = 0.003 and L/D = 3  
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Figure 8. Normalized translational temperature contour in a) x-z and  
b) x-y symmetry planes for sKn = 0.003 and L/D = 3  
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Figure 9.  Normalized rotational temperature contour in a) x-z and  
b) x-y symmetry planes for sKn = 0.003 and L/D = 3  
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Figure 10. Normalized density contour in a) x-z and  
b) x-y symmetry planes for sKn = 0.03 and L/D = 3  
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Figure 11. Normalized translational temperature contour in a) x-z and  
b) x-y symmetry planes for sKn = 0.03 and L/D = 3  
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Figure 12.  Normalized rotational temperature contour in a) x-z and  
b) x-y symmetry planes for sKn = 0.03 and L/D = 3  
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Figure 13. The normalized density profile along the (x,0,0) axis from the  

asymptotic model ( σΚν → ∞ ) and the DSMC ( sKn = 10 ) 
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Figure 14. Scaled normalized density profile along the ( )x,0,0   

axis for different values of L/D ; sKn = 0.3  
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Figure 15. Scaled normalized density profile along the ( )x,0,0   

axis for different values of L/D ; sKn = 0.03  
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Figure 16. Scaled normalized density profile along the ( )x,0,0   

axis for different values of L/D ; sKn = 0.003  
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Figure 17. Scaled normalized density profile along the ( )x,0,0   

axis for different values of L/D ; sKn = 0.0003  
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Figure 18. Normalized density profile along the ( )x,0,0   

axis for different sKn  values when L/D = 1.5  
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Figure 19. Normalized density profile along the ( )x,0,0   

axis for different sKn  values when L/D = 3  
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Figure 20. Normalized density profile along the ( )x,0,0   

axis for different sKn  values when L/D = 6  
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Figure 21. Normalized x-, y- and z-direction translational temperature profile  

along the ( )x,0,0 axis for different value of L/D ; sKn = 0.03  
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Figure 22. Normalized x-, y- and z-direction translational temperature profile  

along the ( )x,0,0 axis for different value of L/D ; sKn = 0.003  
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Figure 23. Normalized x-, y- and z-direction translational temperature profile  

along the ( )x,0,0 axis for different value of L/D ; sKn = 0.0003  


