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Direct numericé simulatian of decaying isotropig compressil# turbulene in three dimensios is
usal to examire the behavia of fluctuatiors in density temperatue ard pressue when the initial
conditiors include temperatug fluctuatiors large than pressue fluctuations The numerical
procedue is describé elsewhergthe initial turbulert Mach numbe is subsoni¢0.3 to 0.7, ard the
initial compressil® turbulene is characterize as being in one of three states in which the ratios of
initial kinetic energ in the compressitd modes to totd kinetic energy are respectivelyvery small,
moderag¢ or nearly unity. Only at the lowed values of initial turbulert Mach numbe and energy
ratio do thermodynant scaling follow the predictiors in the literature For turbulert Mach
numbes abowe 0.3, or for finite values of the kinetic energ ratio, the scaling are more complex.
A relationshp betwee turbulert Mach number compressitd pressue and energ ratio, which has
been proposeé previousy for isotherma problems appeas to hold, on average for the cases
computa in this study, all of which are non-isothermal © 1997 American Institute of Physics.
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I. INTRODUCTION

In turbulent compressil@ flows the importane of pres-
sure fluctuations p, has receiva wide recognition in the
literature For example with the aid of some simplifying
assumptios abou the molecula diffusion tetm sud as
Lewis numbe equd to one and the adoptian of Fick’s law,
the conservatia equatio of enery in (x, t) spacé can be
written as
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wher h is the statc enthally per unit mass,p is density,
u, is avelocity component,u is viscosity andP, is the
Prandt number The amplituce of gp/dt determines whether
the enthally can be usefully treatel as a conservatie vari-
able which is critical for non-premixe combustim theory.
Pressue fluctuations p, are also importart in the modeling
of compressitd turbulence especia} terms sud as
pressure—dilatatioﬁ,(pd), where d is velocity divergence
V-u, ard dilatationa dissipatior define by .= 4u(d?),
where angula brackes denoe an average In low Mach
numbe flows it has been generaly believed tha the pressure
fluctuatian is smal compare to its mean as in Morkovin's
hypothesig’ Indeed the well-known Sarka et al. modef of
€. inherenty usea this assumption.

Recenty it was shown by Gho$ ard Matthaeus, in
their dired simulatiors of turbulent polytropic flow in two
dimensionstha there exig three distind types of turbulence,
even for low Mach numbe flow. They catalogd them as (a)
nearly incompressil® flows dominatel by vorticity, (b)
flows characterizé by nea statisticd equipartition of energy
invorticd and compressie modes ard (c) nearly pure acous-
tic turbulene dominatel by compressie modes The dis-
tinctly different scaling of densiy fluctuatiors associated
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with ead of thes flow types suggesthat the pressue fluc-
tuatiors might also hawe distinctly different behavia in each
of thes flows.

This concep is strengtheng by the resuls of Sarkar
et al.®> which shov tha the compressil# patt of pressue is
well correlate with both the fraction of kinetic enery asso-
ciated with the compressit# modes say y, as well as with
the turbulert Mach numbe M,, which is definad as rms
velocity divided by the averag spea of sound Passb and
Pouquet demonstrate the strorg role of M, in earlig two-
dimension& calculations A questio arises as to how this
more comple pressue behavio affects the relationshifs be-
tween density pressue ard temperatug when the phenom-
ena of hed transfe via large initial variation in temperature
with position is addel to the problem Zark ard Matthaeu$?®
and Bayly, Levermoe and Passct found, for nearly incom-
pressibé flows, ca® (a), tha evolution of the behavios of
thes three thermodynant variables dependd on the rela-
tive magnituds of their initial rms values Zark and Mat-
thaets considerd two casesone in which initial temperature
fluctuatiors were of the sane orde as pressue fluctuations,
ard the othe in which initial temperatue fluctuatiors were
much large than the initial pressue fluctuations In the latter
ca® they showal tha the densiy and temperatue fluctua-
tions becone anti-correlatd as the flow evolves They pro-
poseal tha their predictiors may apply more widely than to
just the nearly incompressit# situation.

Onre purpo® of this study is to chedk the Zank’s and
Matthaeus scalirg predictiong® for eath of the three types
of compressil®@ turbulen® mentionel above This study can
also be considerd as an extensia of the semin& work of
Gho$ and Matthaeus by further elucidatirg the natue of
compressit# subsont turbulene in three dimensiois with
hed transfer In the nex sectim we discus in more detail
the theoretich and analyticd backgroun of this researchin
Sec 11 we presemthe numerichd methal ard list the types of
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initial conditiors from which our simulatiors run. The simu-
lation resuls ard ther limitations are discussd in Sec IV,
and are compare with the predictiors of Sec Il. In the final
sectior we summarie the results.

Il. THEORETICAL BACKGROUND

In the literature of compressitd turbulene the viscous
terms in the enery equatio are often neglectd since the
effed of viscosiy isfelt eithe on aviscows time scak (much
greate than the acoustt time scalg or during the formation
of shocls which are scare in flows in which the Mach num-
ber is well belown unity. In an analyss which excludel vis-
cows effects Zark and Matthaeu8 usel the nearly incom-
pressibé (NI) hydrodynami theoy of Klainerman and
Majdal® to study thermodynand scaling in decayimy com-
pressibé turbulencé! when independeninitial temperature
fluctuatiors and the proces of hed conductim are included
in the energy equatian for NI turbulenceThe centra issie of
their theoly was to sed the specift ordes of magnituc of
temperature pressue and velocity fluctuatiors which are
neede to obtain the solutiors to the incompressitd dynami-
cd equatiors as the first orde solution of the compressible
equatiors in an asymptott expansia in sonc Mach number
M, as the smal parameterM; is definal as acharacteristic
velocity divided by the averag sped@ of sound Ms=M;,
the turbulert Mach number when the rms velocity is chosen
as the characteristi velocity. If the initial temperatue fluc-
tuations T', are of orde Mg, which is large than the pres-
sure fluctuations p’,p’:O(Mi), ard if the compressible
fraction of kinetic energy,y, is also smally= O(Mg), then,
they found densiy fluctuatiors are anti-correlatd with tem-
peratue fluctuations That is, p’ =—T'. Here, and through-
out the remainde of this paper a prime (") will indicak a
fluctuation abou a mean value.

This resut can be formally understod from the equation
of state For an ided gas when the mean pressurgdensity
ard temperatue are ead normalized to unity, and if the
fluctuatiors abou these mears are smal enough then ap-
proximately,

=T +p". @
If p'=0(M,) ard if p’ maintairs a magnitue of order
M§ throughot the evolution of the flow, thenp’ and T’ will
be anti-correlatd and T’ will be of orde M.

The behavia of pressue fluctuations p’, has been pre-
dicted by Sarka et al.® without consideratia of hea con-
ductin in the enery equation They mace use of an
asymptott methal of Erlebache et al.,'? in which the origi-
nd problem is reducel to severa simple ses of equations
by decomposig the dependenvariables into one se which
solves aknown problem and a secom se which satisfies a
new evolution equation In this theory, the velocity is split
into an incompressiblesolenoidé velocity, ui', ard acom-
pressibé velocity, uic, ard the correspondig pressue is
change into an incompressit# pressue p' ard acompress-
ible pressue p®, where u!, p' satisf the incompressible
equations ard uic, pC satisf the wave equatim on the
acoustt time scak t .
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Since p' satisfiess aPoissm equatia for incompressible
pressurg it retairs the orde of M2 as the flow evolves.

Meanwhike p'C is shown to satisfy the following relation-
ship:

el PMix

((p'9%
where M, is the turbulert Mach number,y is the polytropic
index and y is the ratio of turbulent kinetic energy in the
compressit# modes to the totd turbulert kinetic energy, x
=(uFuC)/ ((ufuS)+(ulu)). The turbulert Mach number
M, is definel by M=u},,J/c*, wher u; . is given by
(ufu*)¥2 ard c* is the averag sourd speed c*
=((yR* T*)l’z). The angk bracke denots aspa® average
or, in thee statisticaly homogeneosicomputationsan en-
sembek average.

Equatian (3) implies that at acoustt equilibrium, there
is an approximag equipartition betwee the kinetic ard po-
tentid componerg of the compressil# energy It predicts
tha the compressitd pressue fluctuatiors will depend
strongy on y, aside from any direct Mach number effect. In
particula it mears tha the pressue may rise to be of order
M. wheny is of order 1. From the numerical simulations of
Ghos and Matthaeus, we know that the nature of low Mach
numbe flow depend strongl on the initial value of y, say
Xo- For xo=0, low Mach numbe flows always remain
neary incompressible That is, X=O(Mt2). In this case,
p'¢=0O(M3), which is of the sane orde as p’'. Thus the
totd pressue is of orde M2, which further implies tha the
Zark and Matthaews anti-correlatio betweenp’ and T’ is
recoverd when eithe of them is of orde M,

In the light of (3) it is also possibe to predid a break-
down of the theol develope by Zark and Matthaeu& when
the initial velocity consists mainly of longitudind modes,
Xo=1. Then the pressue fluctuatiors are of orde M, and the
anti-correlatio betweenp’ andT' is lost. Further, we note
that (3) was obtainal for casa in which heda conductian is
neglectedThe questiam then arises as to whethe (3) remains
valid when temperatue fluctuatiors are dominar over pres-
sure fluctuatiors initially . From the full enery equati it is
eay to show tha the effecs of hea conductiviy on the
evolution of pressue fluctuatiors are indeal negligible on
the acoustt time scale which validates our use of the scaling
relationshig in the resuls presentd in the abowe analysis.
Numerica resuls reportel in Sec 1V suppot this conclu-
sion.

1, ©)

Ill. EQUATIONS AND NUMERICAL METHOD

The time-dependencompressil# Navier—Stokes equa-
tions are solved in non-dimensionlaform. In orde for it to
be compatibe with the ENO (essentiall non-oscillatory
coce develope by Shu et al.,*® the velocity scak is chosen
to be ug , the spee of sourd divided by the squae root of
the ratios of specift heats tha is, ug = (R* T3 ), where R*
is the specift gas constat and T§ is the initial mean tem-
perature Denotirg the velocity field by uf*, we defire the
non-dimensionavelocity, u;=u;/u§ . Since the mean flow
field in homogeneos turbulen@ has no intrinsic length
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scale we choo® turbulert integrd lengh scale L} , which
is defined as in incompressik# turbulencet? as the reference
length The non-dimensionlaspatid coordinae is therefore
xi=x*/L§, and time is non-dimensionalized
t=t*ug/Ly . The densiy is scalel by the initial mean den-
sity, pg, So that p=p*/p§ . For consistencythe tempera-
ture, T, pressurge p ard enery pe unit mas are non-
dimensionalizd by, respectively the initial mear temp-
erature T§, the initial mea pressure pg, Where
Pe =ps R*TE ard the mean squae velocity |u} |2. The vis-
cosity is non-dimensionalizé as u=1/Re=u*/pjusLs,
u* is assumd constam ard Re is the referene Reynolds
number The Prandt numbey P, = u*C7/o*, whereo™* is
the therma conductiviy ard C; , the specift heat is also
constantIn all the aboe definitions the superscrip (*) de-
notes adimensionavariable.

With the abowe non-dimensionalizatignthe compress-
ible Navier—Stokes equatiors can be written as

P 2 (pu)=0 4
o 3 (PU) =0, @
J N J
ﬂt(PUi) axj(PUin)
ap d U du; 2 duy
= -t | | o =S 2 ], (5)
(9Xi &Xj &XJ (?Xi 3 an
J N J
&t(PeT) é,xj(PeTUj)
_ Jd s " aui+0”Uj 2 (7Uk5
_&Xi P ijuj K &XJ &Xi 3 &Xk i uj
M aT
4+, 6
(y-DP, 7% ©

where e; is the non-dimensionlatotd enery given by
er=e+ %ujuj , € isthe non-dimensionlainternd energy and
the seconl coefficien of viscosity \, is taken as A= — 3.
In this systen the equatio of stak becoms p=pT. Equa-
tions (4), (5) ard (6) are solved by time advancemenin a
periodc box. The high orde spatid integration required for
DNS is obtainel here via the ENO proceduré® ard a third-
orde Rungg—Kutta TVD method? is usal for time integra-
tion. The efficienyy and accurag of this ENO schene has
bee assesskby Ladeinck et al.!>16

as

TABLE I. Initial conditiors for temperaturepressue and densiy fluctua-
tions.

Variable Initid conditions
Po=PeS+ Py, wher py' satisfies Poission equation

Pressure V2py'=-V-@u'-vu'),

and p°=—py'.
Temperature To=+Ipo]-sgr(py'), where sgn is the sign function

; 1

Density r_

po= 71

O 1+Ty

The connectim betwea initial velocity and thermody-
namt stat datg and the occurrene of ary of the flow re-
gimes describé in the Introductin hawe been elucidatel by
Ghodh and Matthaeus ard Zark ard Matthaeu$. In orde to
specify the orde of magnitue of the fluctuatian of the vari-
ous thermodynant variables we impos an initial pressure
fluctuation field, p'o, computel from the incompressible
pressue Poissm equatian obtainel from (5). That is,

V(py)=—V-(u"-vu").

Then we sd theinitial totd fluctuatian pressue p| to zem so
that its compressit# componeh py© satisfies p)°=—p}',
py' is of orde M? initially and to obtan an initial tempera-
ture fluctuatian field, T, of orde M, we adog the relation-
ship To=1/|pg' | - sgn(pg), where sgn is asign function The
correspondig initial densiy fluctuatin field is obtained
from

_Po_,_ ~To
Po=T, 1+,

With this prescription we arrive at a situatian in which the
temperatue fluctuatiors are initially mud large than the
pressue fluctuations a condition required for validity of the
low Mach numbe scalirg theow of Zark and Matthaeug A
summay of thes initial conditiors on the fluctuatian of ther-
modynameé quantities is presentd in Table I. In orde to
determire the separat effecs of Mach numbe arnd com-
pressibé energy fraction y on (3), and on the evolution of
the scales of fluctuatiors in density pressue and tempera-
ture, we adop the procedue of Ladeinck et al.,*® noting that
differernt values of y can be obtained through a different
weighting of the compressil# componehin spectré space.
In Table Il, columrs 2 ard 3, we haw listed the initial

TABLE II. List of run Casesinitial values of parameterg, ard M, ard values of parameterge andM, and

correlation coefficiens R, C,r and C,; at t=2.5.

Runcase xo Mo x(t=2.5) M(t=2.5) Rp(t=2.5) C,1(t=25) C,p(t=2.5)
SVHD1 0 0.3 0.0079 0.17 572010 ! —-0.93 0.29
SVHD2 0 0.5 0.027 0.28 6.1010°* —-0.58 0.61
RVHD1 0.6 0.3 0.34 0.12 4.0410°2 -0.34 0.70
RVHD2 0.6 0.5 0.30 0.21 7.411072 0.099 0.85
RVHD3 0.6 0.7 0.29 0.30 1.0710°! 0.27 0.91
LVHD1 1. 0.3 0.94 0.083 1.7210°3 —0.45 0.65
LVHD2 1. 0.5 0.88 0.14 5.4010°% -0.18 0.77
LVHD3 1. 0.7 0.83 0.19 3.5410 2 0.059 0.87
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FIG. 1. Comparisa betwea coare me$h (N3=64%) and fine mesh
(N®=96°%) in ca® LVHD3: (a) time evolution of Taylor scak Reynolds
numbe Re, ; (b) incompressil# enery spectrun E3(k) at t=0.6; (c) com-
pressibé enery spectrun E°(k) at t=0.6.

values of turbulent Mach number M,,, and compressible
energ fraction, o, for 8 computationbruns which use the
initial prescriptiors describé in the previows paragraph.
Thes encompasthe approximag values M;;=0.3, 0.5 and
0.7 and (=0, 0.6 ard 1.0 Two othea case featuring
slightly differert initial conditiors havwe been compute and
are discussd in Sec |V in the context of numericé results

Phys. Fluids, Vol. 9, No. 6, June 1997
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FIG. 2. Comparisa of time evolution betwe® coare mes (N3=64% and
fine mes (N3=96% in cae LVHD3: (a) locd densiy ratio pmax/ pmin; (b)
locd maximum turbulert Mach numbe (M) hax; (¢) locd maximun ve-
locity divergene (V- V) nax-

obtaina for the runs listed in Table II. The significane of
the initials assignd to ead run, suc as SVHD, is as fol-
lows.

SV signifies aneary incompressiblemostly solenoidal
velocity field with the fraction of energy in the compressible
modes closeto 0. RV (randan velocity) signifies an approxi-
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FIG. 3. Densiy contous for case LVHD 3 with 96° mesh at (a) t=0.76 and
(b) t=1.63.

mat balane betwea energis in the solenoidd and com-
pressibé modes In our RV case the associatd values of
Xo are in the neighborhod of 0.6, so tha 60% of the kinetic
enery is in the compressit@ modes initially. LV (longitu-
dind velocity) designate case in which the initial velocity
field consiss almog entirely of longitudind modes with neg-
ligible vorticity; x is approximate}l 1. The method usel to
generat these compressitd velocity fields are describe in
detal in Ladeince et al.’® The letters HD stard for heat
dominated® which is comma to all the simulatian runs in
this study.

In mog of the computationhcase the grid size is 64°,
the Prandt numbe is se at P,=0.7, the referene Reynolds

numbey Re = p*ujLy/w* , at 200 and the energy spectrum

has the form

E(k) ~k*exp(— k2/2k3), Ko=4.
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It is well known that to fully resole the flow scales we
require that

Kmax7=1.0,

where 7 is the Kolmogorov length scale arki,,, is the
maximd resolval wave number For the spectrd method,
Kmax=30.17 for 64°. Basel on the resuls in Ladeinde
et al.,'> we assune this estimati; of k., iS applicabé in
our numericd method Thus unde the conditiors of our
simulatiors [Re =200, (M{)max=0.7], Kmax7 Can be esti-
mated as large than 0.98 initially, which suggest tha the
smalles characteristi flow scales are resolvel in our calcu-
lations At the sane time, the doman size of 27, which is
normalizel by the integrd lengh scale L§ , ensurs tha the
periodc bounday conditiors will not unduly constran the
solution Using a procedue describe elsewheré?® we are
able to se the initial value of Mach number Mo, indepen-
dently to begin the computation The values of initial com-
pressibé energy fraction, xo, are obtainal by exploiting the
three differert types of compressit# turbulen@ promulgated
by Ghos and Matthaeus, as mentione in the Introduction.

In Sec 1V the resuls of these simulatiors are plotted as
an evolution over time from the initial states described
above The non-dimensionia time, t, is defina by
t=t*/75,, where 73, is the edd/ turn-ove time at t=0.
75 , the eddy turn-ove time, is defined by \*/uy;,, where
\* isthe Taylor microscag of the flow.

IV. NUMERICAL RESULTS

The compute resource availabk for these 3-D simula-
tions generaly limited us to a 64> mesh with the possibility
of some 96° mes calculatiors to investigaé whethe there
was adequat resolution to obtain the scalirg laws of the
more compressitd LVHD cases Porter Pouqué and
Woodward’ have reportel anumericé simulatian of decay-
ing supersort turbulene on a512° computationamesh but
without initially dominarn temperatue fluctuations.

The scalirg laws for rms pressurgdensiy ard tempera-
ture are expecté to be mostly sensitie to the energy con-
taining regiors of the specta and may not be particularly
sensitive to the smal scak structure which is the first to
suffer from inadequat resolution To ted this concep we
computed at both 64° and 96° resolutions the evolution in
time of the Taylor-sca¢ Reynolds number Re, , definal as

5 1/2
Reﬁ(%) (p){|ul?),
whete ¢ is the energy dissipatio rate and the compressible
and incompressil® enery spectra’*® for two cases
SVHD1 ard LVHD3, respectively the leag and mog com-

pressibé casesFigure 1 shows the resuls for LVHD3. The

initial conditiors are nearl identical but it is clea tha there

is aresolution problem at the highe$ wave numbes in this

case In the SVHD1 ca® (nat shown), the simulatian results
for Re, and the enery specta at 64° ard 96° are virtually

indistinguishal# excep at the far tail of the compressible
enery spectrim whete the enery levd is negligible.
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FIG. 4. Comparatio of time evolution betwea coare mes (N3=64%, solid line) ard fine mes (N3=96°, solid squae symbo): (a) rms densityp/, in case
SVHDJ; (b) rms temperatue T/, in ca® SVHDY; (c) rms densityp/,,s in ca® LVHD3; (d) rms temperatue T, in cag LVHD3.

In Figs. 2(a), 2(b) and 2(c), othe aspecs of the resolu-
tion problemn are shown for the LVHD 3 case the SVHD1
ca® (not shown, which is nearlyy incompressibledisplays
virtually no difference betwea 64° and 96° simulations Al-
though there are significan discrepancigin the locd density
ratio, pmax/Pmin @nd the locd maximum values of Mach
numbe and velocity divergencethey are predominantf in
the early stage of the decy and may be partially due to
differences in initial conditions As the flow evolves from its
highly compressit# initial stae thee parametes terd to-
ward the sane asymptott stat independenof mes size.

In Fig. 3, we show two typicd densiy contous for the
LVHD3 ca® at t=0.76 [Fig. 3(a)] and t=1.63 [Fig. 3(b)]
with 96° mes size Thes are times at which the locd tur-
bulert Mach numbe is, respectively supersorgé and sub-
sonic as shown in Fig. 2(b). The densiy gap betwee con-

toursis the sane (6p=0.072) in both cases. The prevalence

of much steepe densiy gradien regiors at the earlie time
may be an indication thet the resolutio is at leag capabé of
locating the presene of locd supersord regiors in the flow.
At the same densiy gap no sud steg gradiert regiors occur
in the SVHD1 ca® (not shown. At 64° mes ard t=0.63,
the LVHD 3 ca% also displays regiors of high densiy gradi-
ent but with less intensiy than the 96° simulatin a the
sane ggp betwea contous (nat shown).

In Fig. 4, the scalirg behavios of both densiy and tem-
peratue fluctuatiors are displayel for the SVHD1 and

Phys. Fluids, Vol. 9, No. 6, June 1997

LVHD3 cass for both 64° and 96° meshes The SVHD1
ca®[Fig. 4(a) and Fig. 4(b)] is unaffecte by increasd mesh
size as expectedand the highly compressil# LVHD 3 case
[Fig. 4(c) ard Fig. 4(d)] shows vely littl e effect of the reso-
lution imprecisian see in the earlig figures The resolution
at 64° appeas to be adequag for our purpose which is to
determire scalirg laws.

The quantiy F definal by (3) was computel for all eight
runs listed in Table II, as well as for two othe runs not
appearig there Surprisingly excep for a brief initial tran-
sient the avera@ value (F), was close to unity for all runs,
althoudh (3) was derived from an asymptott theory? in the
absene of hea conductior® As a consequengethe com-
pressibé pressue fluctuatiors are independenl tied, appar-
ently, to both turbulert Mach numbe and enery ratio, at
leag on the averagewhethe the flow energ is mostly in the
compressit# or solenoidh modes In Fig. 5 we display F
versist for two casa SVHDZ1, in which both y, and M, are
small and LVHD2, in which they are larger. All othe runs
producel similar resuls for F, which oscillates abou 1 with
amplitudes and periods increasimy slightly as the magnitudes
of xo ard My, increase.

In Figs 6-8 we showv the evolutiors of rms density,
Pims» temperatureT/ .o, and pressurep, . for ead of the
eight runs To ead of thes figures excep the first, we have
addedyp s to indicaie how far the thermodynant stat is
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from an asymptott acoustt limit in which p’=yp’. In each
figure, abrief initial transien is evidert in the evolution It is

cause by our choice of initial conditiors which are chosen
to conform to NI theory Our intereg is in the thermody-
nami behavios beyord the transiens which lag for at most
0.57%, and which we ignore in the following discussionOne
genera observatio from thes figures is the decreas in the
rate of decy of T, as initial Mach numbe M, or initial

enery ratio xg, is increased.

The resuls of cae SVHD1 are plotted in Fig. 6(a). This
ca® is the closes to the NI limit in which the prediction
Prms= Tims IS €Xpecte to be realized Figure 6(a) shows that
it is, approximatelyard tha pressue fluctuatiors are signifi-
cantly less than thoe of densiy and temperature Case
SVHD?2, presentd in Fig. 6(b), like SVHD], is almog to-
tally solenoida initially, but begirs with a highe initial
Mach numbe than SVHDL. In this cag the densiy fluctua-
tions grow to be large than the temperatue fluctuations,
which are comparak# in magnituck to the pressue fluctua-
tions T/ 1e=Prms<Prms- Although p/.,< is only moderately
larger than T/ it is clea tha the predictiors of Zark and
Matthaeu® for NI turbulene tha they are equa does not
carry accuratgl up to Mo=0.5.

Figure 7 shows resuls for the RVHD caseswhich are
initially in a stak of approximag¢ equipartitin of energy
betwea compressit® ard solenoidd modes,x,=0.6. The
cas with the loweg M, is RVHD1, ard the resuls of this
simulation are presentd in Fig. 7(a). In this cas we find
Tims<Prms=Prms- The higher xo has enhancd the magni-
tude of pressue fluctuatiors significantly, and the density
fluctuatiors somewhat comparée to thoe from SVHD1
[Fig. 6(a)] which has the sane M ;= 0.3. Figure 7(b) gives
the resuls for RVHD2, which differs from RVHD1 by an
increase in My from 0.3 to 0.5. In this case,
T ms<Prms<Prms< YPims. Which indicates an increag in
pressue fluctuatian intensityy with Mach number relative to
the intensities of temperatue and densiy fluctuations When
the Mach numbe is increasd further to My=0.7, the
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RVHD3 case it can be see from Fig. 7(c) tha the pressure
fluctuation amplituce almog reache the acoustt limit in
which p/s= ¥Pims-

The three cases in which the initial stak of the turbu-
lenae consiss almog entirely of compressie modes are
LVHD1, 2 ard 3. In Fig. 8(a), the rms thermodynant quan-
tities for LVHD 1 shav a remarkabé similarity to the low
Mach numbe (M;;=0.3) RVHD1 case The existene of a
large fraction of compressil# modes in the former case
does nat sean to hawe astrorg effed on the relative sizes of
the thermodynantd fluctuations althoudh it does enhance
their amplitudes Again, T/,<<p/ms=Prms- It Shoutl be
noted tha this is not the behavio of SVHD1 [p;s
<T/ms=Pims» Fig. 6(@)] which isalso at M;=0.3, but is of
a differert characterbeing nearly incompressible.

When My, isincreasd to M,;=0.5 [ca® LVHD2, Fig.
8(b)] we find a similar situation The relative behavios of
Tims: Prms @nd p/s are qualitativey like those see in Fig.
7(b), ca® RVHD2, which has the sane initial Mach number.
Tha is, T;ms<Pims<Prims<YPims- HOwever the magni-
tudes of the® fluctuatiors are increasd in the LVHD 2 case
by as mud as 15% ove thoe of RVHD2. At the higher
initial Mach number M;o=0.7, which is presentd in Fig.
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FIG. 6. Time evolution of rms density,p/ s, temperatureT,,,s, pressure,
Pims @nd yp/ms in (@) cae SVHDL (=0, M;;=0.3); (b) ca® SVHD2
(x0=0, Mu=0.5—, p(ms; == Timsi ***» Pfms’ == YPms-
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FIG. 7. Time evolution of rms density,p;,s, temperatureT, s, pressure,
Prms @ndyp/msin (8) ca® RVHD1 (x(=0.6, M,=0.3); (b) ca® RVHD2
(x0=0.6, Mx=0.9); (c) ca® RVHD3 (x,=0.6, M;(:=0.7):—, p/ms: -

’ . ’ . ’
Timss =%+ Prmss == YPrms-

8(c), the resuls for LVHD 3 shaw the sane kind of affinity to
those of RVHD3 [Fig. 7(0)]. T/ns<P{ms<Prms™ YPrms, IN
both casesbut the enhancemenof the amplitudes of these
fluctuatiorsin the LVHD ca% is abou 30% over thoe in the
RVHD simulation. It should be noted
Pims= YPrms, the amplitudes of pressue ard densiy fluc-
tuatiors are sufficiently large tha Eq. (2) is no longe valid.

In Table II, columrs 6, 7 ard 8, we presentfor ead of
the eight simulatian casesthe ratio of the magnitue of in-

Phys. Fluids, Vol. 9, No. 6, June 1997

that when

LVHD1

LVHD2

FIG. 8. Time evolution of rms density,p/ s, temperatureT,,,s, pressure,
Pims @nd yp/ms in (@ cae LVHD1 (xo=1, M,=0.3); (b) ca® LVHD2
(xo=1, M=0.5); (0) ca® LVHD3 (xo=1, M=0.7):— pimsi -

’ . ’ . ’
Tims: ***+ Prms: ="+ YPrms-

compressible to compressible pressure
Rp=|Pims/Pims|, the densiy—pressue correlatinn coeffi-

ciert C,,=(p'p")/p{msPrms. ard the densiy—temperature
correlation coefficiert C,r=(p'T')/ p{msTims @ 2.5 eddy
turn over times of evolution Initially, for all casesby the

proces in which initial conditiors were sé (see Sec Il ):

Ry(0)=1; C,,(0)=0; C,1(0)=—1. Thechoieof t = 2.5

is arbitrary, since beyord the initial transiem period which

is always less than t=0.5, ead of thes quantities is stable,
with smal oscillatiors or slow decay.
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FIG. 9. Time evolution of turbulert Mach number M, with initial energy
ratio, xo=0.6.— M=0.3 -+, M{(=0.5; ---, M{x=0.7.

Again, it is clea from Table Il tha only the SVHD1
ca® can be considerd to approximag¢ the thermodynamic
scaling base&l on NI hydrodynami theoy in which
C,p=0, C,r=—1.0, and the exchang betwe& compress-
ible and incompressit# enery isweak R,=1. When My is
increasd from 0.3 to 05 (SVHD2) ther is a significant
divergene from NI predictions In the three RVHD cases,
and the three LVHD casesthere is amonotont increag of
R, with M, when x is fixed. This result the increag in
size of incompressil# pressue fluctuatiors over those of
compressitg pressue fluctuatiors as the Mach numbe is
increasedwas at first surprising but it is in fact consistent
with Eq. (3), wherely p’©=0(M,), and the scalirg result
for incompressitd pressue p"=O(Mt2). In the SVHD
case R, increass less noticeaby with Mach number Thisis
apparentl cause by the fact that yo=0 in the® cases|t
can be sea from Table I, column 4, that y(t) att=2.5is
abou 3 times as large for SVHD2 as for SVHD1. Conse-

1.0 T T I
os | ]
: M,,=0.5 1
o — RVHD2
06 3 Smm——— LVHD2 ]
2 SVHD2 ]
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02} 7]
00 . .
0 1 t 2

FIG. 10. Time evolution of enery ratio, xo, with initial turbulert Mach
number M;=0.5.—, xo=0; -+, x0=0.6, ---, xo=1.0.
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quenty a more carefu estimae p’*=0O(M*?) and
p''=O[M{(1—x)] shows that R,=O(M/x*?), may
change only marginaly when M,q increass from 0.3 to 0.5
if x<<1 and has the behavior shown in column 4.

Excep at the lowed Mach number M,;,=0.3 density
ard temperatue fluctuatiors are weakly correlatel for both
RVHD ard LVHD simulations wherea densiy and pres-
sure becone even more closel correlatel as the Mach num-
ber is increased until the acoustt limit p’'=yp' is ap-
proachedOn the othe hard it is clea from Table || tha the
values of C,, vary little between RVHD and LVHD cases
with the same initial Mach number Thes seens to be akind
of saturatiom so that the effed of o on C,, is no greate at
Xo=1 than at y,=0.6. The relatively large pressue fluctua-
tions and strorg correlation betwea densiy and pressue at
high compressibiliy suggestha pressue fluctuatiors play a
more importart role than previousy thought? The increase
of C,r from negatiwe to slightly positive as My, is increased
to 0.7 is consisteh with experimenth and simulational
observation® of a slightly positive densiy—temperatue cor-
relation well away from the wall in a high Mach number
flow.

Figures 9 ard 10, respectively show typicd resuls for
the evolutiors of M(t) with x fixed, and y(t) with M
fixed. The values of y and M, at the particula time t=2.5
are also displayeal in colurm 4 and 5, respectively of Table
II. M(t), for the RVHD case with xo=0.6, is presentd in
Fig. 9. The decy of M(t) is monotont in all three cases
(excep for some smal oscillatiors in RVHD1), if the initial
transiem from NI scalirg is excluded RVHD3, which had
the highes initial Mach nhumbe decay more rapidly than
RVHD2, which itsef decay somewhafaste than RVHDL1.
The dependeneof M, on y, appeas to behae predictably
in thee casesard for all the othe simulatiors not shown.
The behavia of y(t) with M fixed is displayel in Fig. 10,
using the three case for which M;;=0.5. x(t) decreases
moderatef and smoothy with time (beyord the initial tran-
sien) in cae LVHD2, and moderatg}l but in a somewhat
more oscillatoy mode in cage RVHD2. x(t) increases
monotonicaly with time but remairs at a low levd for
SVHD2, in which yo=0; this behavio causs the we& de-
pendene of R, on My, in SVHD cases as explaingl in a
previows paragraphThe soure of oscillation in y(t) for the
RVHD case is not clear.

The two simulatiors mentionel at the beginnirg of this
section as nat appearig in the figures or tables were SVHD
cass (M;=0.3 ard 0.5 for which we varied the initial
condition on pressue fluctuatiors by forcing the initial com-
pressibé pressue to be zera Although the initial transients
were quite different from those presentd in Fig. 6 there was
no discernibé difference in the long term thermodynamic
rms or correlatio datashown on thoe figures or in Table Il

V. CONCLUSIONS

The SVHD1 simulatian has reproducedapproximately,
the NI thermodynant scaling predictel by Zark and
Matthaeu$ Excep for simulation SVHD1 it is clea tha NI
basel scaling for the thermodynantd quantities pressure,
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densiy and temperatue are not adequag descriptios of

compressit# turbulen@ with large initial temperatue varia-

tions and the pressue fluctuatiors do not reman smal com-

paral to the mean when the energ ratio or the Mach number
isincreasedThisis consistetwith similar behavior&results
for RV ard LV in isothermé cases. The thermodynamic
behavig in regimes in which NI scaling do nat apply, has
bee presentd for situatiors in which the initial temperature
fluctuatiors are large compare to the initial pressue fluc-

tuation ard for turbulent Mach numbes up to 0.7. Fluctua-
tions of, and correlatiors betweentemperaturgpressue and

densiy are strorg functions of both initial turbulet Mach

numbe M, ard initial enery ratio y,, but they are mono-

tonic ard stabk functiors which seen to approab akind of

saturatim of their relative values when M, ;>05 and

X0=0.6.

The asymptott stak of acoustt turbulence in which
p’'=vyp', is approximately attained wheM;;=0.7 and
xo=1.0, and in tha state densiy and temperatue are effec-
tively uncorrelatd at two eddy turnove times despie being
perfecty anti-correlatd initially.

Equatio (3), an equatia for function F, introducel in a
simple context is, on average a very accurag¢ predicta of
the relationshp betwee compressil#@ pressue fluctuations,
turbulert Mach numbe ard energ ratio for all the cass we
hawe computed We hawe no definitive explanatia for this
behavio at present The sarme conclusio also holds for the
two cass we computed but have not shown which had
differert initial conditiors than those listed in Table I1.
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