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Direct numerical simulation of decaying, isotropic, compressible turbulence in three dimensions is
used to examine the behavior of fluctuations in density, temperature and pressure when the initial
conditions include temperature fluctuations larger than pressure fluctuations. The numerical
procedure is described elsewhere, the initial turbulent Mach number is subsonic, 0.3 to 0.7, and the
initial compressible turbulence is characterized as being in one of three states in which the ratios of
initial kinetic energy in the compressiblemodes to total kinetic energy are, respectively, very small,
moderate or nearly unity. Only at the lowest values of initial turbulent Mach number and energy
ratio do thermodynamic scalings follow the predictions in the literature. For turbulent Mach
numbers above 0.3, or for finite values of the kinetic energy ratio, the scalings are more complex.
A relationship between turbulent Mach number, compressible pressure and energy ratio, which has
been proposed previously for isothermal problems, appears to hold, on average, for the cases
computed in this study, all of which are non-isothermal. © 1997 American Institute of Physics.
@S1070-6631~97!03106-1#
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I. INTRODUCTION

In turbulent compressible flows the importance of pres-
sure fluctuations, p, has received wide recognition in the
literature. For example, with the aid of some simplifying
assumptions about the molecular diffusion term such as
Lewis number equal to one and the adoption of Fick’s law,
the conservation equation of energy in ~x, t! space1 can be
written as
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where h is the static enthalpy per unit mass,r is density,
uk is a velocity component,m is viscosity andPr is the
Prandtl number. The amplitude of ]p/]t determines whethe
the enthalpy can be usefully treated as a conservative vari-
able, which is critical for non-premixed combustion theory.
Pressure fluctuations, p, are also important in the modeling
of compressible turbulence, especially terms such as
pressure-dilatation,2 ^pd&, where d is velocity divergence
¹–u, and dilatational dissipation,3 defined by ec5

4
3m^d2&,

where angular brackets denote an average. In low Mach
number flows it has been generally believed that the pressure
fluctuation is small compared to its mean, as in Morkovin’s
hypothesis.4 Indeed, the well-known Sarkar et al. model3 of
ec inherently used this assumption.

Recently it was shown by Ghosh and Matthaeus,5 in
their direct simulations of turbulent polytropic flow in two
dimensions, that thereexist threedistinct typesof turbulence,
even for low Mach number flow. They cataloged them as ~a!
nearly incompressible flows dominated by vorticity, ~b!
flows characterized by near statistical equipartition of energy
in vortical and compressivemodesand ~c! nearly pureacous-
tic turbulence dominated by compressive modes. The dis-
tinctly different scalings of density fluctuations associated
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with each of these flow types suggest that the pressure fluc-
tuationsmight also have distinctly different behavior in each
of these flows.

This concept is strengthened by the results of Sarkar
et al.3 which show that the compressible part of pressure is
well correlated with both the fraction of kinetic energy asso-
ciated with the compressible modes, sayx, as well as with
the turbulent Mach number Mt , which is defined as rms
velocity divided by the average speed of sound. Passot and
Pouquet6 demonstrated the strong role of Mt in earlier two-
dimensional calculations. A question arises as to how this
more complex pressure behavior affects the relationships be-
tween density, pressure and temperature when the phenom-
enon of heat transfer via large initial variation in temperature
with position is added to theproblem. Zank and Matthaeus7,8

and Bayly, Levermore and Passot9 found, for nearly incom-
pressible flows, case ~a!, that evolution of the behaviors of
these three thermodynamic variables depended on the rela-
tive magnitudes of their initial rms values. Zank and Mat-
thaeusconsidered two cases, one in which initial temperature
fluctuations were of the same order as pressure fluctuations,
and the other in which initial temperature fluctuations were
much larger than the initial pressure fluctuations. In the latter
case they showed that the density and temperature fluctua-
tions become anti-correlated as the flow evolves. They pro-
posed that their predictions may apply more widely than to
just the nearly incompressible situation.

One purpose of this study is to check the Zank’s and
Matthaeus’ scaling predictions7,8 for each of the three types
of compressible turbulencementioned above. This study can
also be considered as an extension of the seminal work of
Ghosh and Matthaeus5 by further elucidating the nature of
compressible subsonic turbulence in three dimensions with
heat transfer. In the next section we discuss in more detail
the theoretical and analytical background of this research. In
Sec. II I wepresent thenumerical method and list the typesof
)/1754/10/$10.00 © 1997 American Institute of Physics
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initial conditions from which our simulations run. The simu-
lation results and there limitations are discussed in Sec. IV,
and are compared with the predictions of Sec. II . In the final
section we summarize the results.

II. THEORETICAL BACKGROUND

In the literature of compressible turbulence the viscous
terms in the energy equation are often neglected since the
effect of viscosity is felt either on aviscous timescale ~much
greater than the acoustic time scale! or during the formation
of shockswhich are scarce in flows in which theMach num-
ber is well below unity. In an analysis which excluded vis-
cous effects, Zank and Matthaeus8 used the nearly incom-
pressible ~NI! hydrodynamic theory of Klainerman and
Majda10 to study thermodynamic scalings in decaying com-
pressible turbulence11 when independent initial temperature
fluctuations and the process of heat conduction are included
in theenergy equation for NI turbulence. Thecentral issueof
their theory was to seek the specific orders of magnitude of
temperature, pressure and velocity fluctuations which are
needed to obtain the solutions to the incompressible dynami-
cal equations as the first order solution of the compressible
equations in an asymptotic expansion in sonic Mach number
Ms as the small parameter. Ms is defined as acharacteristic
velocity divided by the average speed of sound; Ms5Mt ,
the turbulent Mach number, when the rms velocity is chosen
as the characteristic velocity. If the initial temperature fluc-
tuations, T8, are of order Ms , which is larger than the pres-
sure fluctuations, p8,p85s(Ms

2), and if the compressible
fraction of kinetic energy,x, is also small,x5s(Ms

2), then,
they found, density fluctuations are anti-correlated with tem-
perature fluctuations. That is, r852T8. Here, and through-
out the remainder of this paper, a prime (8) wil l indicate a
fluctuation about a mean value.

This result can be formally understood from theequation
of state. For an ideal gas, when the mean pressure, density
and temperature are each normalized to unity, and if the
fluctuations about these means are small enough, then, ap-
proximately,

p85T81r8. ~2!

If r85s(Ms) and if p8 maintains a magnitude of order
Ms

2 throughout the evolution of the flow, thenr8 andT8 will
be anti-correlated and T8 wil l be of order Ms .

The behavior of pressure fluctuations, p8, has been pre-
dicted by Sarkar et al.3 without consideration of heat con-
duction in the energy equation. They made use of an
asymptotic method of Erlebacher et al.,12 in which the origi-
nal problem is reduced to several simpler sets of equations
by decomposing the dependent variables into one set which
solves aknown problem, and a second set which satisfies a
new evolution equation. In this theory, the velocity is split
into an incompressible, solenoidal velocity, ui

I , and a com-
pressible velocity, ui

C , and the corresponding pressure is
changed into an incompressible pressure pI and acompress-
ible pressure pC, where ui

I , pI satisfy the incompressible
equations, and ui

C , pC satisfy the wave equation on the
acoustic time scale tc .
Phys. Fluids, Vol. 9, No. 6, June 1997
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Since pI satisfies aPoisson equation for incompressible
pressure, it retains the order of Ms

2 as the flow evolves.
Meanwhile p8C is shown to satisfy the following relation-
ship:

F5
g2Mt

2x

^~p8C!2&
.1, ~3!

whereMt is the turbulent Mach number,g is the polytropic
index and x is the ratio of turbulent kinetic energy in th
compressible modes to the total turbulent kinetic energy,x
5^ui

Cui
C&/(^ui

Cui
C&1^ui

Iui
I&). The turbulent Mach number

Mt is defined by Mt5urms* /c* , where urms* is given by
^ui* ui* &1/2 and c* is the average sound speed: c*
5^(gR*T* )1/2&. The angle bracket denotes aspace average
or, in these statistically homogeneous computations, an en-
semble average.

Equation ~3! implies that, at acoustic equilibrium, there
is an approximate equipartition between the kinetic and po-
tential components of the compressible energy. It predicts
that the compressible pressure fluctuations wil l depend
strongly on x, aside from any direct Mach number effect.
particular it means that the pressure may rise to be of order
Mt whenx is of order 1. From the numerical simulations
Ghosh andMatthaeus,5 weknow that thenatureof low Mach
number flow depends strongly on the initial value of x, say
x0 . For x0.0, low Mach number flows always remain
nearly incompressible. That is, x5s(Mt

2). In this case,
p8C5s(Mt

2), which is of the same order as p8I . Thus the
total pressure is of order Mt

2 , which further implies that the
Zank and Matthaeus anti-correlation betweenr8 and T8 is
recovered when either of them is of order Mt.

In the light of ~3! it is also possible to predict a break-
down of the theory developed by Zank and Matthaeus8 when
the initial velocity consists mainly of longitudinal modes,
x0.1. Then thepressurefluctuationsareof order Mt and the
anti-correlation betweenr8 andT8 is lost. Further, we note
that ~3! was obtained for cases in which heat conduction is
neglected. Thequestion then arisesas to whether ~3! remains
valid when temperature fluctuations are dominant over pres-
sure fluctuations initially . From the full energy equation it is
easy to show that the effects of heat conductivity on the
evolution of pressure fluctuations are indeed negligible on
theacoustic timescale, which validatesour useof thescaling
relationships in the results presented in the above analysis.
Numerical results reported in Sec. IV support this conclu-
sion.

III. EQUATIONS AND NUMERICAL METHOD

The time-dependent compressible Navier–Stokes equa-
tions are solved in non-dimensional form. In order for it to
be compatible with the ENO ~essentially non-oscillatory!
code developed by Shu et al.,13 the velocity scale is chosen
to be u0* , the speed of sound divided by the square root of
the ratios of specific heats, that is, u0*5(R*T0* ), where R*
is the specific gas constant and T0* is the initial mean tem-
perature. Denoting the velocity field by ui* , we define the
non-dimensional velocity, ui5ui* /u0* . Since the mean flow
field in homogeneous turbulence has no intrinsic length
1755Cai, O’Brien, and Ladeinde
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scale, we choose turbulent integral length scale, L0* , which
is defined as in incompressible turbulence,14 as the reference
length. The non-dimensional spatial coordinate is therefore
xi5xi* /L0* , and time is non-dimensionalized a
t5t* u0* /L0* . The density is scaled by the initial mean den-
sity, r0* , so that r5r* /r0* . For consistency, the tempera-
ture, T, pressure, p and energy per unit mass are non-
dimensionalized by, respectively, the initial mean temp-
erature, T0* , the initial mean pressure, p0* , where
p0*5r0*R*T0* and the mean square velocity uu0* u2. The vis-
cosity is non-dimensionalized as m51/Rer5m* /r0*u0*L0* ,
m* is assumed constant and Rer is the reference Reynolds
number. The Prandtl number, Pr5m*Cp* /s* , wheres* is
the thermal conductivity and Cp* , the specific heat, is also
constant. In all the above definitions the superscript ~* ! de-
notes adimensional variable.

With the above non-dimensionalization, the compress-
ible Navier–Stokes equations can be written as
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where eT is the non-dimensional total energy given by
eT5e1 1

2ujuj , e is the non-dimensional internal energy and
the second coefficient of viscosity, l, is taken as l52 2

3m.
In this system the equation of state becomes p5rT. Equa-
tions ~4!, ~5! and ~6! are solved by time advancement in a
periodic box. The high order spatial integration required for
DNS is obtained here via the ENO procedure13 and a third-
order Runge–Kutta TVD method13 is used for time integra-
tion. The efficiency and accuracy of this ENO scheme has
been assessed by Ladeinde et al.15,16
1756 Phys. Fluids, Vol. 9, No. 6, June 1997
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The connection between initial velocity and thermody-
namic state data, and the occurrence of any of the flow re-
gimes described in the Introduction have been elucidated by
Ghosh and Matthaeus5 and Zank and Matthaeus.8 In order to
specify the order of magnitude of the fluctuation of the vari-
ous thermodynamic variables, we impose an initial pressure
fluctuation field, p0

I , computed from the incompressible
pressure Poisson equation obtained from ~5!. That is,

¹2~p08
I !52¹•~uI•¹uI !.

Then weset the initial total fluctuation pressure p08 to zero so
that its compressible component p08

C satisfies p08
C52p08

I ,
p08

I is of order Mt
2 initially and, to obtain an initial tempera-

turefluctuation field, T08 , of order Mt , weadopt the relation-
ship T085Aup08

I u•sgn(p08
I), where sgn is asign function. The

corresponding initial density fluctuation field is obtained
from

r085
p0
T0

215
2T08

11T08
.

With this prescription we arrive at a situation in which the
temperature fluctuations are initially much larger than the
pressure fluctuations, a condition required for validity of the
low Mach number scaling theory of Zank and Matthaeus.8 A
summary of these initial conditionson thefluctuation of ther-
modynamic quantities is presented in Table I. In order to
determine the separate effects of Mach number and com-
pressible energy fraction x on ~3!, and on the evolution of
the scales of fluctuations in density, pressure and tempera-
ture, we adopt the procedure of Ladeinde et al.,15 noting that
different values of x can be obtained through a differen
weighting of the compressible component in spectral space.

In Table II , columns 2 and 3, we have listed the initial

TABLE I. Initial conditions for temperature, pressure and density fluctua-
tions.

Variable Initial conditions

p085p08
c1p08

I , where p08
I satisfies Poission equation

Pressure “

2p08
I52¹–„uI–¹uI),

and p08
c52p08

I .
Temperature T085Aup08

I u•sgn(p08
I), where sgn is the sign function

Density r085
1

11T08
21
TABLE II . List of run Cases, initial values of parametersx0 and Mt0 and values of parametersx andMt and
correlation coefficients Rp , CrT and Crp at t52.5.

Run case x0 Mt0 x(t52.5) Mt(t52.5) Rp(t52.5) CrT(t52.5) Crp(t52.5)

SVHD1 0 0.3 0.0079 0.17 5.7931021 20.93 0.29
SVHD2 0 0.5 0.027 0.28 6.1031021 20.58 0.61
RVHD1 0.6 0.3 0.34 0.12 4.0431022 20.34 0.70
RVHD2 0.6 0.5 0.30 0.21 7.4131022 0.099 0.85
RVHD3 0.6 0.7 0.29 0.30 1.0731021 0.27 0.91
LVHD1 1. 0.3 0.94 0.083 1.7231023 20.45 0.65
LVHD2 1. 0.5 0.88 0.14 5.4031023 20.18 0.77
LVHD3 1. 0.7 0.83 0.19 3.5431022 0.059 0.87
Cai, O’Brien, and Ladeinde
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values of turbulent Mach number, Mt0 , and compressible
energy fraction,x0 , for 8 computational runs, which use the
initial prescriptions described in the previous paragraph.
These encompass the approximate valuesMt050.3, 0.5 and
0.7 and x050, 0.6 and 1.0. Two other cases featuring
slightly different initial conditions have been computed and
are discussed in Sec. IV in the context of numerical results

FIG. 1. Comparison between coarse mesh (N35643) and fine mesh
(N35963) in case LVHD3: ~a! time evolution of Taylor scale Reynolds
number Rel ; ~b! incompressible energy spectrum Es(k) at t50.6; ~c! com-
pressible energy spectrum Ec(k) at t50.6.
Phys. Fluids, Vol. 9, No. 6, June 1997
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obtained for the runs listed in Table II . The significance of
the initials assigned to each run, such as SVHD, is as fol-
lows.

SV signifies anearly incompressible, mostly solenoidal
velocity field with the fraction of energy in the compressible
modes close to 0. RV ~random velocity! signifiesan approxi-

FIG. 2. Comparison of time evolution between coarsemesh (N35643) and
finemesh (N35963) in case LVHD3: ~a! local density ratio rmax /rmin ; ~b!
local maximum turbulent Mach number (Mt)max ; ~c! local maximum ve-
locity divergence (¹•V)max .
1757Cai, O’Brien, and Ladeinde
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mate balance between energies in the solenoidal and com-
pressible modes. In our RV cases the associated values of
x0 are in the neighborhood of 0.6, so that 60% of the kinetic
energy is in the compressible modes, initially . LV ~longitu-
dinal velocity! designates cases in which the initial velocity
field consists almost entirely of longitudinal modeswith neg-
ligible vorticity; x0 is approximately 1. Themethods used to
generate these compressible velocity fields are described in
detail in Ladeinde et al.15 The letters HD stand for heat
dominated,8 which is common to all the simulation runs in
this study.

In most of the computational cases the grid size is 643,
the Prandtl number is set at Pr50.7, the referenceReynolds
number, Rer5 r*u0*L0* /m* , at 200 and the energy spectrum
has the form

E~k!;k4exp~2k2/2k0
2!, k054.

FIG. 3. Density contours for case LVHD3 with 963 mesh at ~a! t50.76 and
~b! t51.63.
1758 Phys. Fluids, Vol. 9, No. 6, June 1997
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It is well known that, to fully resolve the flow scales, we
require that

kmaxh>1.0,

where h is the Kolmogorov length scale andkmax is the
maximal resolved wave number. For the spectral method,
kmax.30.17 for 643. Based on the results in Ladeinde
et al.,15 we assume this estimation of kmax is applicable in
our numerical method. Thus, under the conditions of our
simulations @Rer5200, (Mt)max50.7] , kmaxh can be esti-
mated as larger than 0.98 initially , which suggests that the
smallest characteristic flow scales are resolved in our calcu-
lations. At the same time, the domain size of 2p, which is
normalized by the integral length scale, L0* , ensures that the
periodic boundary conditions wil l not unduly constrain the
solution. Using a procedure described elsewhere,15 we are
able to set the initial value of Mach number, Mt0 , indepen-
dently to begin the computation. The values of initial com-
pressible energy fraction,x0 , are obtained by exploiting the
three different types of compressible turbulence promulgated
by Ghosh and Matthaeus,5 as mentioned in the Introduction.

In Sec. IV the results of these simulations are plotted as
an evolution over time from the initial states described
above. The non-dimensional time, t, is defined by
t5t* /te0* , where te0* is the eddy turn-over time at t50.
te* , the eddy turn-over time, is defined by l* /urms* , where
l* is the Taylor microscale of the flow.

IV. NUMERICAL RESULTS

The computer resources available for these 3-D simula-
tions generally limited us to a643 mesh, with the possibility
of some 963 mesh calculations to investigate whether there
was adequate resolution to obtain the scaling laws of the
more compressible LVHD cases. Porter, Pouquet and
Woodward17 have reported anumerical simulation of decay-
ing supersonic turbulenceon a5123 computational mesh, but
without initially dominant temperature fluctuations.

The scaling laws for rms pressure, density and tempera-
ture are expected to be mostly sensitive to the energy con-
taining regions of the spectra and may not be particularly
sensitive to the small scale structure, which is the first to
suffer from inadequate resolution. To test this concept we
computed, at both 643 and 963 resolutions, the evolution in
time of the Taylor-scale Reynolds number, Rel , defined as

Rel5S 5

3m« D 1/2^r&^uuu2&,

where « is the energy dissipation rate, and the compressible
and incompressible energy spectra,17,18 for two cases
SVHD1 and LVHD3, respectively: the least and most com-
pressible cases. Figure 1 shows the results for LVHD3. The
initial conditions are nearly identical, but it is clear that there
is a resolution problem at the highest wave numbers in this
case. In the SVHD1 case ~not shown!, the simulation results
for Rel and the energy spectra at 64

3 and 963 are virtually
indistinguishable except at the far tail of the compressible
energy spectrum where the energy level is negligible.
Cai, O’Brien, and Ladeinde
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FIG. 4. Comparation of timeevolution between coarsemesh (N35643, solid line! and finemesh (N35963, solid square symbol!: ~a! rmsdensityr rms8 in case
SVHD1; ~b! rms temperature Trms8 in case SVHD1; ~c! rms densityr rms8 in case LVHD3; ~d! rms temperature Trms8 in case LVHD3.
ce
In Figs. 2~a!, 2~b! and 2~c!, other aspects of the resolu-
tion problem are shown for the LVHD3 case; the SVHD1
case ~not shown!, which is nearly incompressible, displays
virtually no difference between 643 and 963 simulations. Al-
though there are significant discrepancies in the local density
ratio, rmax/rmin and the local maximum values of Mach
number and velocity divergence, they are predominantly in
the early stages of the decay and may be partially due to
differences in initial conditions. As the flow evolves from its
highly compressible initial state these parameters tend to-
ward the same asymptotic state independent of mesh size.

In Fig. 3, we show two typical density contours for the
LVHD3 case at t50.76 @Fig. 3~a!# and t51.63 @Fig. 3~b!#
with 963 mesh size. These are times at which the local tur-
bulent Mach number is, respectively, supersonic and sub-
sonic as shown in Fig. 2~b!. The density gap between con-
tours is the same (dr.0.072) in both cases. The prevalen
of much steeper density gradient regions at the earlier time
may be an indication that the resolution is at least capable of
locating the presence of local supersonic regions in the flow.
At the samedensity gap no such steep gradient regionsoccur
in the SVHD1 case ~not shown!. At 643 mesh and t50.63,
the LVHD3 case also displays regions of high density gradi-
ent, but with less intensity than the 963 simulation at the
same gap between contours ~not shown!.

In Fig. 4, the scaling behaviors of both density and tem-
perature fluctuations are displayed for the SVHD1 and
Phys. Fluids, Vol. 9, No. 6, June 1997
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LVHD3 cases for both 643 and 963 meshes. The SVHD1
case @Fig. 4~a! and Fig. 4~b!# is unaffected by increasedmesh
size as expected, and the highly compressible LVHD3 case
@Fig. 4~c! and Fig. 4~d!# shows very littl e effect of the reso-
lution imprecision seen in the earlier figures. The resolution
at 643 appears to be adequate for our purpose, which is to
determine scaling laws.

Thequantity F defined by ~3! wascomputed for all eight
runs listed in Table II , as well as for two other runs not
appearing there. Surprisingly, except for a brief initial tran-
sient, the average value, ^F&, was close to unity for all runs,
although ~3! was derived from an asymptotic theory12 in the
absence of heat conduction.3 As a consequence, the com-
pressible pressure fluctuations are independently tied, appar-
ently, to both turbulent Mach number and energy ratio, at
least on theaverage, whether theflow energy ismostly in the
compressible or solenoidal modes. In Fig. 5 we display F
versus t for two casesSVHD1, in which bothx0 andMt0 are
small, and LVHD2, in which they are larger. Al l other runs
produced similar results for F, which oscillates about 1 with
amplitudes and periods increasing slightly as themagnitudes
of x0 and Mt0 increase.

In Figs. 6–8 we show the evolutions of rms density,
r rms8 , temperature, Trms8 , and pressure, prms8 , for each of the
eight runs. To each of these figures, except the first, we have
addedgr rms8 to indicate how far the thermodynamic state is
1759Cai, O’Brien, and Ladeinde
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from an asymptotic acoustic limi t in which p85gr8. In each
figure, abrief initial transient is evident in the evolution. It is
caused by our choice of initial conditions which are chosen
to conform to NI theory. Our interest is in the thermody-
namic behaviors beyond the transients which last for at most
0.5te0* and which we ignore in the following discussion. One
general observation from these figures is the decrease in the
rate of decay of Trms8 as initial Mach number Mt0, or initial
energy ratio x0, is increased.

The results of case SVHD1 are plotted in Fig. 6~a!. This
case is the closest to the NI limi t in which the prediction
r rms8 5Trms8 is expected to be realized. Figure 6~a! shows that
it is, approximately, and that pressure fluctuationsare signifi-
cantly less than those of density and temperature. Case
SVHD2, presented in Fig. 6~b!, like SVHD1, is almost to-
tally solenoidal initially , but begins with a higher initial
Mach number than SVHD1. In this case the density fluctua-
tions grow to be larger than the temperature fluctuations,
which are comparable in magnitude to the pressure fluctua-
tions, Trms8 .prms8 ,r rms8 . Although r rms8 is only moderately
larger than Trms8 it is clear that the predictions of Zank and
Matthaeus8 for NI turbulence that they are equal does not
carry accurately up to Mt050.5.

Figure 7 shows results for the RVHD cases, which are
initially in a state of approximate equipartition of energy
between compressible and solenoidal modes,x050.6. The
case with the lowest Mt0 is RVHD1, and the results of this
simulation are presented in Fig. 7~a!. In this case we find
Trms8 ,r rms8 .prms8 . The higherx0 has enhanced the magni-
tude of pressure fluctuations significantly, and the density
fluctuations somewhat, compared to those from SVHD1
@Fig. 6~a!# which has the same Mt050.3. Figure 7~b! gives
the results for RVHD2, which differs from RVHD1 by an
increase in Mt0 from 0.3 to 0.5. In this case
Trms8 ,r rms8 ,prms8 ,gr rms8 , which indicates an increase in
pressure fluctuation intensity with Mach number, relative to
the intensities of temperature and density fluctuations. When
the Mach number is increased further to Mt050.7, the

FIG. 5. Time evolution of parameter F, F5g2Mt
2x/^p8C&2 . ---, SVHD1

(x050, Mt050.3);—, LVHD2 (x051, Mt050.5).
1760 Phys. Fluids, Vol. 9, No. 6, June 1997
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RVHD3 case, it can be seen from Fig. 7~c! that the pressure
fluctuation amplitude almost reaches the acoustic limi t in
which prms8 5gr rms8 .

The three cases in which the initial state of the turbu-
lence consists almost entirely of compressive modes are
LVHD1, 2 and 3. In Fig. 8~a!, the rms thermodynamic quan-
tities for LVHD1 show a remarkable similarity to the low
Mach number (Mt050.3) RVHD1 case. The existence of a
larger fraction of compressible modes in the former case
does not seem to have astrong effect on the relative sizes of
the thermodynamic fluctuations, although it does enhance
their amplitudes. Again, Trms8 ,r rms8 .prms8 . It should be
noted that this is not the behavior of SVHD1 @prms8
,Trms8 .r rms8 , Fig. 6~a!# which is also at Mt050.3, but is of
a different character, being nearly incompressible.

When Mt0 is increased to Mt050.5 @case LVHD2, Fig.
8~b!# we find a similar situation. The relative behaviors of
Trms8 , r rms8 and prms8 are qualitatively like those seen in Fig.
7~b!, caseRVHD2, which has the same initial Mach number.
That is, Trms8 ,r rms8 ,prms8 ,gr rms8 . However, the magni-
tudes of these fluctuations are increased in the LVHD2 case
by as much as 15% over those of RVHD2. At the higher
initial Mach number, Mt050.7, which is presented in Fig.

FIG. 6. Time evolution of rms density,r rms8 , temperature, Trms8 , pressure,
prms8 and gr rms8 in ~a! case SVHD1 (x050, Mt050.3); ~b! case SVHD2
(x050, Mt050.5):—, r rms8 ; ---, Trms8 ; •••, prms8 ; -•-, gr rms8 .
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ns,

8~c!, the results for LVHD3 show thesamekind of affinity to
those of RVHD3 @Fig. 7~c!#. Trms8 ,r rms8 ,prms8 .gr rms8 , in
both cases, but the enhancement of the amplitudes of these
fluctuations in theLVHD case isabout 30% over those in the
RVHD simulation. It should be noted that whe
prms8 5gr rms8 , the amplitudes of pressure and density fluc-
tuations are sufficiently large that Eq. ~2! is no longer valid.

In Table II , columns 6, 7 and 8, we present, for each of
the eight simulation cases, the ratio of the magnitude of in-

FIG. 7. Time evolution of rms density,r rms8 , temperature, Trms8 , pressure,
prms8 andgr rms8 in ~a! case RVHD1 (x050.6, Mt050.3); ~b! case RVHD2
(x050.6, Mt050.5); ~c! case RVHD3 (x050.6, Mt050.7):—, r rms8 ; ---,
Trms8 ; •••, prms8 ; -•-, gr rms8 .
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compressible to compressible pressure fluctuatio
Rp5u prms8I /prms8C u, the density–pressure correlation coeffi-
cient Crp5 ^r8p8&/r rms8 prms8 , and the density–temperature
correlation coefficient CrT5 ^r8T8&/r rms8 Trms8 at 2.5 eddy
turn over times of evolution. Initially , for all cases, by the
process in which initial conditions were set ~see Sec. III !:
Rp(0)51; Crp(0)50; CrT(0)521. The choice of t 5 2.5
is arbitrary, since, beyond the initial transient period, which
is always less than t50.5, each of these quantities is stable,
with small oscillations or slow decay.

FIG. 8. Time evolution of rms density,r rms8 , temperature, Trms8 , pressure,
prms8 andgr rms8 in ~a! case LVHD1 (x051, Mt050.3); ~b! case LVHD2
(x051, Mt050.5); ~c! case LVHD3 (x051, Mt050.7):—, r rms8 ; ---,
Trms8 ; •••, prms8 ; -•-, gr rms8 .
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Again, it is clear from Table II that only the SVHD1
case can be considered to approximate the thermodynamic
scalings based on NI hydrodynamic theory in which
Crp.0, CrT.21.0, and the exchange between compress-
ible and incompressible energy isweak, Rp.1. WhenMt0 is
increased from 0.3 to 0.5 ~SVHD2! there is a significant
divergence from NI predictions. In the three RVHD cases,
and the three LVHD cases, there is amonotonic increase of
Rp with Mt0 when x0 is fixed. This result, the increase in
size of incompressible pressure fluctuations over those of
compressible pressure fluctuations as the Mach number is
increased, was at first surprising, but it is in fact consistent
with Eq. ~3!, whereby p8C5s(Mt), and the scaling result
for incompressible pressure p8I5s(Mt

2). In the SVHD
casesRp increases lessnoticeably with Mach number. This is
apparently caused by the fact that x0.0 in these cases. It
can be seen from Table II , column 4, that x(t) at t.2.5 is
about 3 times as large for SVHD2 as for SVHD1. Conse-

FIG. 9. Time evolution of turbulent Mach number, Mt , with initial energy
ratio, x050.6.—, Mt050.3; •••, Mt050.5; -•-, Mt050.7.

FIG. 10. Time evolution of energy ratio, x0 , with initial turbulent Mach
number, Mt050.5.—,x050; •••, x050.6; -•-, x051.0.
1762 Phys. Fluids, Vol. 9, No. 6, June 1997

Copyright ©2001. A
quently a more careful estimate p8C5s(Mtx
1/2) and

p8I5s@Mt
2(12x)# shows that Rp.s(Mt /x

1/2), may
change only marginally when Mt0 increases from 0.3 to 0.5
if x!1 and has the behavior shown in column 4.

Except at the lowest Mach number, Mt050.3, density
and temperature fluctuations are weakly correlated for both
RVHD and LVHD simulations, whereas density and pres-
sure become even more closely correlated as theMach num-
ber is increased, until the acoustic limi t p8.gr8 is ap-
proached. On the other hand it is clear from Table II that the
values of Crp vary littl e between RVHD and LVHD cases
with thesame initial Mach number. Theseseems to be akind
of saturation so that the effect of x0 on Crp is no greater at
x0.1 than at x050.6. The relatively large pressure fluctua-
tions and strong correlation between density and pressure at
high compressibility suggest that pressure fluctuations play a
more important role than previously thought.4 The increase
of CrT from negative to slightly positive asMt0 is increased
to 0.7 is consistent with experimental and simulational
observations19 of a slightly positivedensity–temperaturecor-
relation well away from the wall in a high Mach number
flow.

Figures 9 and 10, respectively, show typical results for
the evolutions of Mt(t) with x0 fixed, and x(t) with Mt0

fixed. The values of x andMt at the particular time t52.5
are also displayed in column 4 and 5, respectively, of Table
II . Mt(t), for the RVHD cases with x050.6, is presented in
Fig. 9. The decay of Mt(t) is monotonic in all three cases
~except for some small oscillations in RVHD1!, if the initial
transient from NI scaling is excluded. RVHD3, which had
the highest initial Mach number decays more rapidly than
RVHD2, which itself decays somewhat faster than RVHD1.
The dependence of Mt on x0 appears to behave predictably
in these cases, and for all the other simulations not shown.
The behavior of x(t) with Mt0 fixed is displayed in Fig. 10,
using the three cases for which Mt050.5. x(t) decreases
moderately and smoothly with time ~beyond the initial tran-
sient! in case LVHD2, and moderately but in a somewhat
more oscillatory mode in case RVHD2. x(t) increases
monotonically with time but remains at a low level for
SVHD2, in which x050; this behavior causes the weak de-
pendence of Rp on Mt0 in SVHD cases, as explained in a
previous paragraph. The source of oscillation in x(t) for the
RVHD cases is not clear.

The two simulations mentioned at the beginning of this
section as not appearing in the figures or tables, were SVHD
cases (Mt050.3 and 0.5) for which we varied the initial
condition on pressure fluctuations by forcing the initial com-
pressible pressure to be zero. Although the initial transients
were quite different from those presented in Fig. 6 therewas
no discernible difference in the long term thermodynamic
rmsor correlation datashown on thosefigures, or in Table II.

V. CONCLUSIONS

The SVHD1 simulation has reproduced, approximately,
the NI thermodynamic scalings predicted by Zank and
Matthaeus.8 Except for simulation SVHD1 it is clear that NI
based scalings for the thermodynamic quantities, pressure,
Cai, O’Brien, and Ladeinde
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density and temperature are not adequate descriptions of
compressible turbulence with large initial temperature varia-
tions and the pressure fluctuations do not remain small com-
pared to themean when theenergy ratio or theMach number
is increased. This is consistent with similar behavioral results
for RV and LV in isothermal cases.5 The thermodynamic
behavior in regimes in which NI scalings do not apply, has
been presented for situations in which the initial temperature
fluctuations are large compared to the initial pressure fluc-
tuation and for turbulent Mach numbers up to 0.7. Fluctua-
tions of, and correlations between, temperature, pressure and
density are strong functions of both initial turbulent Mach
number Mt0 and initial energy ratio x0, but they are mono-
tonic and stable functions which seem to approach akind of
saturation of their relative values when Mt0.0.5 and
x0>0.6.

The asymptotic state of acoustic turbulence, in which
p85gr8, is approximately attained whenMt050.7 and
x051.0, and, in that state, density and temperature are effec-
tively uncorrelated at two eddy turnover times, despite being
perfectly anti-correlated initially.

Equation ~3!, an equation for function F, introduced in a
simple context, is, on average, a very accurate predictor of
the relationship between compressible pressure fluctuations,
turbulent Mach number and energy ratio for all the cases we
have computed. We have no definitive explanation for this
behavior at present. The same conclusion also holds for the
two cases we computed, but have not shown, which had
different initial conditions than those listed in Table II.
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