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1. Introduction 
 
1.1. Introduction to Industrial Design/Optimization  

 
iSCRIPT was developed primarily for performance calculations and design/optimization 

of engineering systems, with a focus on large systems. As a result, iSCRIPT was designed 

to include tools for modeling and optimizing large-scale systems. It has provisions for 

modeling a system in a decomposed fashion, and automatically executes in parallel, taking 

advantage of multi-processor computational resources. iSCRIPT also contains novel 

optimization procedures, which allow for the optimization of decomposed systems in an 

efficient manner. To facilitate detailed modeling of engineering components and systems, 

iSCRIPT has the full features of a programming language, comparable to those available in 

traditional programming environments such as FORTRAN. 

 

A common technique for carrying out a multi-level design/optimization can be divided into 

three tasks, as shown in Figure 1.1 below. 
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Figure 1.1. Tasks in a multi-level design/optimization analysis. 

 

1.1.1. Decomposition 

In physical decomposition, the system is divided up into physically-interacting subsystems, 

each possessing a certain degree of autonomy but depending on other subsystems via a 

number of coupling variables. Disciplinary decomposition divides the system along the 

lines of different disciplines, such as thermodynamics, economics, aerodynamics, etc. 

Conceptual decomposition breaks down the system according to the type of variables. For 
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instance, the system can be broken down into operational variables that vary in time and 

those that do not vary in time.  Time decomposition decomposes a dynamic problem into a 

series of quasi-stationary problems or a series of stationary time segments. 

 

1.1.2. Modeling 

Modeling of the various subsystems in a large system typically involves software products 

from different vendors. A great challenge in this step is the integration of the different 

software products. Several levels can be identified in the multi-level modeling and 

optimization process: 

 

Low-Level Function Interpreters and Symbolic Language Programs 

These are tools that allow an engineer to specify the equations and models comprising a 

component in a mathematical form, aggregate these low-level models into higher-level 

models through additional mathematical expressions and functions. In principle, a complete 

system can be built using low-level functions. However, the procedure is difficult and 

prone to error. Sample tools in this category include spreadsheets, such as Excel, and 

programming and scripting languages, such as MATLAB, Mathematica, or Maple. 

 

Aggregated Component Tools 

These are pre-packaged tools for specific models. Examples include engine simulator for 

computing the thrust and weight of the propulsion system (e.g., Weight Analysis of 

Turbine Engines (WATE)) or ADVISOR, a public domain drive-train analysis tool, or a 

heat exchanger program for the various heat exchangers in the sub-systems of aircraft. 

Component tools are typically treated as a “black box” in the integration of models into the 

complete system.  

 

Approximation Tools 

Response surfaces may be generated from measurements of the performance of a 

component as a function of selected decision variables and used as the model in the multi-

level optimization phase. 

 

1.1.3 Optimization 

The use of a detailed representation of a component is a critical factor in terms of 

computational resources. The problems of interest are typically multi-objective, with 

objectives such as: 

 

 drag minimization (or maximization of lift/drag ratio in a mission segment) 

 gross take-off weight minimization 

 fuel consumption minimization 

 minimization of acoustic noise during take-off and landing 

 cost minimization (capital, operating, and environmental) 

 

Although the capability for multi-objective optimization is usually important, a 

recombination of the various objectives into a single metric, such as exergy, may 

sometimes alleviate the multi-objective requirement. iSCRIPT optionally supports exergy-

based optimization of aircraft. 



 3 

 

Optimization procedures include gradient formulation and genetic algorithms (GA). 

Gradient-based methods work well for subsystems with continuous variables, but are prone 

to local optima and divergence when the initial guess solutions are far from the true 

solutions. Procedures based on genetic algorithms and expert systems are more 

computationally intensive, but they are not as prone to local optima (are more tolerant to 

arbitrary initial guess), and can be used for mixed integer problems. In aerospace 

engineering, the variables include integers, Boolean, and continuous variables. GAs are 

utilized to isolate the optima while the gradient-based method can be combined with the 

GA to speed up the “climb to the peak,” once all integer variables are set. In other words, a 

combination of several optimization procedures is typically used for a complex problem.  

 

1.2. Why We Developed iSCRIPT  

 
iSCRIPT was developed mainly because existing tools for engineering design were not 

explicitly developed for that purpose, and were therefore unable to take advantage of the 

inherent structures that are present in engineering problems. Engineering context includes 

(engineering) units, material or physical limits (constraints), or the natural association of 

variables with components or system, and the association of components with systems or 

subsystems. Engineers must fill this gap by writing codes to convert variables between 

different engineering units and procedures, and to coordinate the association of components 

within a system. This makes the development of detailed large systems very unwieldy and 

error-prone. 

 

With improved computational power and little additional work, engineers can now afford 

to carry out performance analysis and design/optimization to increased levels of fidelity. 

iSCRIPT takes advantage of modern computer architecture by implementing procedures to 

automatically operate in a parallel environment without requiring the designer to explicitly 

parallelize models, as would be necessary in a traditional programming environment. 

 

One problem facing designers of large-scale engineering systems is that the models for the 

design are not always available a single software or programming platform. For instance, 

engineers designing aircraft may sometimes call on the code – WATE – for the modeling 

of an engine separate from other models, which may be implemented in other software 

products. System modeling and design tools must allow systems to be built based on 

components, some of which are modeled in a different software or programming platform. 

iSCRIPT is being developed with this cross-platform operability in mind. 

 

1.3. How We Want You to See ISCRIPT 

 
Although iSCRIPT can be used in the same manner as a traditional programming 

environment, with all the features of a programming language, including decision 

structures, loop elements, array variables, and subprogram units, it was designed primarily 

for performance analysis and design optimization of engineering systems. Systems can be 
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described in a building block manner as being composed of subsystems which, in turn, are 

composed of components (Figure 1.2). 

 

System

Subsystem

Component Component

Subsystem

Variables Functions Model

System

Subsystem

Component Component

Subsystem

Variables Functions Model
 

 

Figure 1.2. Elements of an iSCRIPT system project. 

 

Consequently, iSCRIPT can accommodate virtually any decomposition procedure, as the 

components may be models of physical components, conceptual segments of a system, or a 

disciplinary subdivision of a system. 

 

iSCRIPT also contains built-in procedures for optimizing a system made up of decomposed 

subsystems using the iterative local-global optimization (ILGO) procedure. 

 

As previously mentioned, iSCRIPT was designed to automatically execute in a parallel 

environment, taking advantage of multi-processor facilities for faster turn-around on 

simulation tasks. 

 

To provide system-of-systems features, iSCRIPT can execute third-party software, 

potentially providing access to models available on other software products. iSCRIPT is 

also compatible with some engineering modeling environments, such as FORTRAN and 

MATLAB. Programs developed in these environments can, with minimum modification, 

be run in iSCRIPT or included as part of an iSCRIPT system model. 

 

1.4. Conventions Used in this Manual  

 
The following conventions have been adopted in this manual: 

 

 Arial font will be used for script segments, iSCRIPT keywords, and commands that 

should be typed on the keyboard as input. For example: 

 

if (Burner.T > 2700) then 
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CreateComponent (name [,description]) 
 

 Segments of a syntax enclosed within square brackets are optional. For instance, 

given the above syntax template for the CreateComponent command, the 

following two instances of using the command are acceptable: 

 

CreateComponent (Burner, ‘Engine Burner’) 
 

CreateComponent (Burner) 
 

Note that the comma “,” inside the square bracket is omitted when the choice is that 

of using the syntax without the square bracket. 

 

 File names and paths are usually italicized Times Roman. For example in the 

instruction below, the italicized portion represents a file path and name: 

 

Open the file \SampleScripts\HeatRejection\outputscript.txt in the iSCRIPT 

installation directory. 
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2. Installation 
 
2.1. System Requirements  

 
ISCRIPT requires the following: 

 

 Windows 2000/XP/2003, Mac, or Linux 

 Pentium processor with at least 128MB  

 

2.2. Required Software 
 

The following software products may be required in order to use iSCRIPT: 

 

 iSCRIPT installation file 

 MPICH, for execution of iSCRIPT in parallel. 

 

Note: MPICH is optional. It is only needed for parallel calculation. If sequential calculation 

is needed, you do not need to install MPICH. 

 

Obtain these software products as shown below. 

 
 
(1) The installation file for ISCRIPT can be downloaded from 

http://www.ttctech.com/SiteFiles/Downloads/iscript_install.exe. 

 

 
 

(2) MPICH, developed by Argonne National Laboratory, is a freely available, portable 

implementation of MPI, a standard for message-passing protocol for distributed-

memory applications used in parallel computing. MPICH can be downloaded from 

http://www.mcs.anl.gov/mpi/mpich/ 

 

ftp://ftp.mcs.anl.gov/pub/mpi/nt/mpich.nt.1.2.5.exe
http://www.mcs.anl.gov/mpi/mpich/
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2.3. Installing the Required Software 

 
 

(1) To install iSCRIPT: 

 

 Double-click the installation file. 

 
 

 Click “Install.” 

 
 

 Select where to install iSCRIPT and click “OK.” 

 
 

 It may take several minutes for the installation files to be copied.  
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 Click “OK.” 

 

 
 

 Click “OK.” 

 

(2) Install MPICH (Optional; only needed for parallel calculation): 

 

 Double click the installation file. 

 
 

 Click “Setup.” 

 
 

 Click “Next.” 
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 Select where to install MPICH, then click “Next.” 

 
 

 Click “Next.” 

 
 



 10 

 Click “Next.” 

 
 

 Click “Next.” 

 
 

More information about the installation of MPICH can be found on the MPICH 

website. 

 

 

(3) Installed Files 

 

After iSCRIPT is installed, several folders and executable files are installed in the 

installation directory (default is C:\iSCRIPT). These main files or folders are: 

 

 
 

 
 

iscripteditor.exe sysdes.exe parser.exe iscript_mp.exe SampleScripts 
folder 

ata 
folder 

doc 
folder 

uninst 
folder 

iSCRIPT Folder 
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iscripteditor.exe –  iSCRIPT editor, an iSCRIPT code developing environment.  

 

sysdes.exe –  sequential iSCRIPT executable file. No diagnostic information is 

printed out by this executable (a quiet mode compared with 

Parser.exe). 

 

parser.exe –  iSCRIPT analyzer, a sequential iSCRIPT executable file, which 

is intended to print diagnostics to an output file during execution. 

 

iscript_mp.exe –  a parallel iSCRIPT executable file, which can calculate the 

problem in parallel machines 

 
SampleScripts –  contains the iSCRIPT sample problems 

 

ata –  contains the iSCRIPT codes for the ata project 

 

doc –  contains the integrated help files for iSCRIPT Editor 

 
unist –  contains the iSCRIPT “uninstall” information  

 

2.4. iSCRIPT Files 

  
There are two types of iSCRIPT files: project files and script files, with the file extensions 

*.ipr and *.isc, respectively. Sample iSCRIPT codes are presented in Chapter 3. In this 

manual, iSCRIPT files and the source scripts developed to solve a specific problem are 

referred to as an iSCRIPT solution. 

 

Note: iSCRIPT is not case-sensitive. 

 

2.4.1. Script Files (*.isc) 

 
An iSCRIPT file contains source code. Each file may contain a single program, 

subprogram, function, or component subprogram, or simply lines of codes not wrapped in 

any particular structure (program, subprogram, or function). A component subprogram may 

be considered as a special type of subprogram that computes or solves equations necessary 

for the performance analysis of the component. An iSCRIPT file may also contain several 

subprograms and/or functions.  

 

2.4.2. Main Program 

 
When an iSCRIPT solution includes at least one subroutine or function, it is considered as 

having a program structure. Every iSCRIPT solution with a program structure must contain 

a main program. There must be only one main program in a solution. When a solution has a 

program structure, the execution of an iSCRIPT code starts from the main program. When 
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iSCRIPT is used in a component modeling form, the main program usually consists of two 

parts. The first part is the component creation and component variable declaration, and the 

second part contains the system evaluation and/or optimization commands.  

 

When a solution has no program structure (and necessarily comprises of a single file), the 

execution simply starts from the iSCRIPT file at the first line. 

 

2.4.3. Project Files (*.ipr) 

 
When a solution developed in iSCRIPT includes more than one iSCRIPT file, an iSCRIPT 

project file (*.ipr) is needed to aggregate all the files. The project file obeys the following 

rules: 

 

(1) The file content must start with a unique keyword “project” on the first line. 

(2) Both the name and directory of the script files should be included inside the project 

file. When the script files and the project file are in the same folder, the directory 

information of the script files may be omitted. 

(3) At least one of the script files must contain a main program, which is described in 

2.4.2. 

 

An example of a project file is shown below. In the example below, no path information is 

included, as all the iSCRIPT files associated with the solution and listed in the project file 

are contained in the same folder.  

 

 
 

Figure 2.1. Sample project file. 

 

2.5. Running Sample Problems 

 
Sample problems are provided for you in the /SampleScripts subdirectory of the folder in 

which you installed iSCRIPT. They can be opened, edited, and run in iSCRIPT Editor 

environment. In this manual, several examples are provided and described in detail in 

Chapters 4 and 5. The procedure for launching the editing environment is described below. 
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(1) Open iSCRIPT Editor. 

 

(2) In iSCRIPT Editor, open the iSCRIPT project file HeatRejection.ipr located in the 

/SampleScripts/HeatRejection subfolder of the iSCRIPT installation folder. 

 

 
 

 
 

 The project file will open, as shown below. 
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(3) On the toolbar, select “Tools > Run Current Script/Project File” to run the project file. 

 

 
 

 The following screen will appear, containing the output of the program. 

 

 
 

2.6. Output Files 
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The results of a calculation are stored in the file outputscript.txt in the same folder of the 

project file, which contains the computation results of all component variables. You can also 

add your own I/O using iSCRIPT I/O commands. For projects involving optimization, 

additional information can be found in the file optimize.txt. The information includes the initial 

values of the optimization variables and the objective function, the various realizations of the 

system being evaluated, the array of viable systems or realizations (population of individuals in 

genetic algorithm parlance) by generation or as the optimization progresses, and the final 

optimized results. 
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3. Developing and Executing an iSCRIPT Project 

 
In this chapter, we introduce the most basic iSCRIPT procedures for solving an arithmetic 

and algebraic problem, evaluating the performance of an engineering system, and 

optimizing an engineering system.  

 

3.1. Using iSCRIPT to Solve Basic Arithmetic and Algebraic Problems 

 
iSCRIPT has a built-in functionality for arithmetic and algebraic operations. This enables 

iSCRIPT to perform most mathematic calculations, like some common symbolic 

computation software, such as Matlab, Maple, Mathematica, and Mathcad, and 

programming languages, such as FORTRAN and C. 

 

In the current version of iSCRIPT, a math problem is solved by wring a small script. This is 

most conveniently done in the iSCRIPT Editor environment. A GUI is being developed 

that will allow the user to directly evaluate the values of mathematic equations in a 

command window. 

 

Open iSCRIPT Editor and create a new 

script file (*.isc)

Write the script code in the file. 

• Declare variables

• Type the text form of the equations

Save the file and run the file by select 

menu “Tool  Run Current Script/Project File”. 

Find result on screen or in the file 

“outputscript.txt”

General code format

Example code

Open iSCRIPT Editor and create a new 

script file (*.isc)

Write the script code in the file. 

• Declare variables

• Type the text form of the equations

Save the file and run the file by select 

menu “Tool  Run Current Script/Project File”. 

Find result on screen or in the file 

“outputscript.txt”

General code format

Example code

 
 

Figure 3.1. The basic procedure for solving an arithmetic and algebraic problem in 

iSCRIPT. 

 

Figure 3.1 summarizes the basic procedure for solving an arithmetic and algebraic problem 

in iSCRIPT. The steps are also listed below: 
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Step 1. Open iSCRIPT Editor by selecting “iSCRIPT Editor” from the Windows 

“Start” menu.  

Step 2. Create a new file in iSCRIPT Editor and save it as an *.isc file. 

Step 3. Type the word “program main” in the first line of the file. 

Step 4. Declare all the variables in the equations by typing the expressions like “x as 

real,” “x, y as integer,” etc. Variable types and their declaration in iSCRIPT 

can be found in Appendix A.1.1. 

Step 5. Type the equations in text form, such as “x=2+3,” “y=log(x)+sin(x)exp(x^2),” 

etc. The mathematical operations supported in iSCRIPT can be found in 

Appendix A.1. 

Step 6. Type the word “end program” in the last line of the file. 

Step 7. Save the file. 

Step 8. Select “Tools > Run Current Script/Project File” from the menu to run the 

iSCRIPT file. 

Step 9. View the output on screen or in the file “outputscript.txt.” 

 

Note that Steps 3 and 6 may be omitted if you do not wish to adopt a program structure for 

your solution. However, you must adopt a program structure if you must use subroutines or 

functions in a solution. The details of these procedures are illustrated in sample problems in 

Chapters 4 and 5. 

 

3.2. Using iSCRIPT for Performance Analysis of Engineering Systems 

 
iSCRIPT uses a decomposition technique to simulate an engineering system. Outside of 

iSCRIPT, the system is first decomposed into several components, either physically, 

conceptually, or along disciplinary lines. The variables of each component as well as the 

constraints (engineering limits, material constraints, etc.) to the variables are then 

identified. An example could be the fluid inlet temperature into the Burner component of 

an aircraft engine. This variable may be constrained to temperatures less than 2800K for 

safe operation of the burner material. Operating variables are also identified, and are 

considered as system variables, as they do not belong to a particular component. An 

example could be the flight Mach number and altitude at which an aircraft engine is 

operating. 

 

In iSCRIPT, each component is modeled in a separate subprogram (a piece of iSCRIPT 

code containing the equations of the component). The component routine may also access 

or call other functions, subprograms, or other component routines as part of its model. 

Interactions between a component and other components may also be included in a 

component subprogram. The entire system may be modeled by modeling (calling each 

component model) each of its components. The system model may also include interactions 

between the components of the system. 

 

Figure 3.2 summarizes the basic procedures for performance analysis of an engineering 

system in iSCRIPT, using a simple gas exhaust system for illustration. The basic steps are 

also listed below: 
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Step 1. Open iSCRIPT Editor by selecting “iSCRIPT Editor” from the Windows 

“Start” menu. 

Step 2. Create a new file in iSCRIPT Editor and save it as an *.isc file. 

Step 3. Type the words “program programname” and “end program” to create a 

main program. In the body of the main program: 

a. declare all the system’s components and their variables. To declare a 

component, use the CreateComponent statement. To declare a 

component variable, use the CreateVariable statement 

b. declare the overall system and its variable using CreateComponent and 

CreateVariable statements 

c. assign the input values to the system or component variables by typing 

“ComponentName.VariableName = expression” 

d. type “SystemName.Execute” to evaluate the overall system. 

Step 4. After the main program is written, type words “subroutine 
ComponentName()” and “end subroutine” to create the component 

subprograms for each of the system components. In the body of the 

subroutine: 

a. type all the equations modeling the component. 

Step 5. After the component subroutines, type the keyword “subroutine 
SystemName()” and “end subroutine” to create the system subprogram for 

the overall system. In the body of the subroutine:  

a. evaluate each component of the system by typing 

“ComponentName.Execute” in the system subprogram 

b. if there are interactions between the components, type the interaction 

equations 

c. type the overall system performance evaluation equations. 

Step 6. Save the file in iSCRIPT Editor as an *.isc file. 

Step 7. Select “Tools >Run Current Script/Project File” from the menu to run the 

iSCRIPT code. 

Step 8. View the output on screen or in the file “outputscript.txt.” 

 

The details of these procedures are illustrated in sample problems in Chapter 5. 
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Decompose the engineering system

•Create the main program

•Create components by using CreateComponent statement

•Create component variables by using CreateVariable statement

•Create system by using CreateComponent statement.

•Create system variables by using CreateVariable statement

•Assign the input value for system or component  variables

•Execute the system by using system_name.Execute

Simulate each component

•Create the subroutine for each component

•Type all the equations for the component

Simulate the overall system

•Create the subroutine for the system

•Execute the components in order by using 

component_name.Execute statement. 

•Type the interaction equations between components

•Type the overall system performance equations.

Run the program by selecting “Tools > Run Current Script/Project File”

Create the script file in iSCRIPT Editor Example: A gas exhaust system which consists of two components: 

pipe and pump. The costs of pipe and pump are 160D and 2.2 x 108w, 

respectively, where D is the diameter of pipe and w is the gas mass 

flow rate of pump. Evaluate the overall system cost. Assume D=110 

and w=0.020.  Decompose the engineering system

•Create the main program

•Create components by using CreateComponent statement

•Create component variables by using CreateVariable statement

•Create system by using CreateComponent statement.

•Create system variables by using CreateVariable statement

•Assign the input value for system or component  variables

•Execute the system by using system_name.Execute

Simulate each component

•Create the subroutine for each component

•Type all the equations for the component

Simulate the overall system

•Create the subroutine for the system

•Execute the components in order by using 

component_name.Execute statement. 

•Type the interaction equations between components

•Type the overall system performance equations.

Run the program by selecting “Tools > Run Current Script/Project File”

Create the script file in iSCRIPT Editor Example: A gas exhaust system which consists of two components: 

pipe and pump. The costs of pipe and pump are 160D and 2.2 x 108w, 

respectively, where D is the diameter of pipe and w is the gas mass 

flow rate of pump. Evaluate the overall system cost. Assume D=110 

and w=0.020.  

 
 

Figure 3.2. The basic procedure for performance analysis of an engineering system in iSCRIPT. 
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3.3. Using iSCRIPT to Optimize an Engineering System  

 
iSCRIPT’s built-in procedures can automatically optimize an engineering system that 

is formulated in component decomposition form, as illustrated in Section 3.2. The 

way to optimize an engineering system (assuming a single objective variable) is 

similar to that for performance analysis, except:  

 

 an objective variable must be indicated, in addition to the requirements for 

system performance evaluation 

 optimization variables must be indicated, in addition to the requirements for 

system performance evaluation 

 indicate the relations between the system components and the system 

  “System.Optimize” command is used instead of “System.Execute.” 

 

Figure 3.3 summarizes the basic procedures required to optimize an engineering 

system in iSCRIPT. Note that the objective variable (the variable that we want to 

optimize) is declared by using the statement “AddObjective.” The optimization 

variables (the variables that are free to be changed during the optimization) are 

declared by using statement “AddVarObjective.” The basic steps are listed below:  

 

Step 1. Open iSCRIPT Editor by selecting “iSCRIPT Editor” from the Windows 

“Start” menu.  

Step 2. Create a new file in iSCRIPT Editor and save it as an *.isc file. 

Step 3. Type the words “program programname” and “end program” to 

create a main program structure. In the body of the main program: 

a. declare all the system’s components and their variables. To declare a 

component, use the CreateComponent statement. To declare a 

component variable, use the CreateVariable statement. 

b. declare the overall system and its variable using CreateComponent 
and CreateVariable statements. 

c. assign the input values to the system or component variables by 

typing “ComponentName.VariableName = expression” 

d. declare the objective variable by using “AddObjective” statements 

e. declare the optimization variables by using “AddVarObjective” 

statements 

f. indicate the relations between the system components and the system 

by using “AddSubComponent” statements 

g. type SystemName.Optimize to optimize the overall system. 

Step 4. After the main program, type keywords “subroutine 
ComponentName()” and “end subroutine” to create the component 

subroutines for each component. In the body of the subroutine: 

a. type all the equations modeling the component. 

Step 5. After the component subroutines, type the word “subroutine 
SystemName()” and “end subroutine” to create the system 

subroutine. In the body of the subroutine:  
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a. evaluate each of the system’s components by typing 

“ComponentName.Execute” 

b. if there are interactions between the components, type the interaction 

equations between the components 

c. type the overall system performance evaluation equations. 

Step 6. Save the file. 

Step 7. Select “Tools > Run Current Script/Project File” from the menu to run 

the iSCRIPT code. 

Step 8. View the output on screen or in the file “outputscript.txt.” 

 

The details of these procedures are illustrated in sample problems in Chapter 5. 
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Decompose the engineering system

•Create the main program

•Create components by using CreateComponent statement

•Create component variables by using CreateVariable statement

•Create system by using CreateComponent statement.

•Create system variables by using CreateVariable statement

•Assign the input value for system or component  variables

•Declare the objective variables by using AddObjective statement

•Declare the optimization variables by using AddVarObjective

statement

•Indicate  the subsystems by using AddSubComponent statement

•Optimize the by system using System.Optimize

Simulate each of component

•Create the subroutine for each component

•Type all the equations for the component

Simulate the overall system

•Create the subroutine for the system

•Execute the components in order by using 

component_name.Execute statement. 

•Type the interaction equations between components

•Type the overall system performance equations.

Run the program by selecting “Tools > Run Current Script/Project File”

Create the script file in iSCRIPT Editor

Example: Find the optimum values of D and w to minimize the total 

cost of gas exhaust system. Assume 90<D<150 and 0.015<w<0.055.  
Decompose the engineering system

•Create the main program

•Create components by using CreateComponent statement

•Create component variables by using CreateVariable statement

•Create system by using CreateComponent statement.

•Create system variables by using CreateVariable statement

•Assign the input value for system or component  variables

•Declare the objective variables by using AddObjective statement

•Declare the optimization variables by using AddVarObjective

statement

•Indicate  the subsystems by using AddSubComponent statement

•Optimize the by system using System.Optimize

Simulate each of component

•Create the subroutine for each component

•Type all the equations for the component

Simulate the overall system

•Create the subroutine for the system

•Execute the components in order by using 

component_name.Execute statement. 

•Type the interaction equations between components

•Type the overall system performance equations.

Run the program by selecting “Tools > Run Current Script/Project File”

Create the script file in iSCRIPT Editor

Example: Find the optimum values of D and w to minimize the total 

cost of gas exhaust system. Assume 90<D<150 and 0.015<w<0.055.  

 
 

Figure 3.3. General procedures for optimizing an engineering system in iSCRIPT. 
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4. Using iSCRIPT in Simple Programs 

 
In this chapter, we will introduce the most basic iSCRIPT statements and use them 

to write some simple programs. The simplicity of the sample problems does not 

limit the usefulness of the basic iSCRIPT procedures. 

 

4.1. Getting Started 

 
Using iSCRIPT for the first time is easy. In this and the following sections, we will 

introduce you to the iSCRIPT Editor environment and show you how to develop 

and run a simple iSCRIPT code. 

 

To start iSCRIPT Editor, use the “Start” menu to locate the program. The default 

iSCRIPT Editor screen, which opens each time you start the program, is shown in 

Figure 4.1. 

 

 
 

Figure 4.1. iSCRIPT Editor opening window. 

 

The iSCRIPT Editor opening window is similar to most text-editing or program 

development environments. Detail editor commands may be accessed by clicking 

“Help” on the menu. However, only the basic command menus required for 

creating and editing iSCRIPT codes are presented in this manual. These menu items 

are presented below.  
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 iSCRIPT file operations 

 To create a new code file, you can click the new (blank) document 

icon  or select “File > New” from the menu. 

 To open an existing code file, you can click the open file icon  or 

select “File > Open” from the menu to open a file opening dialog 

box. Change the current file directory and select the file you want to 

open. 

 To save a code file, you can click the save file icon  or select  

“File > Save” from the menu. 

 Operations for running iSCRIPT 

 To run iSCRIPT, you can select “Tools > Run Current 

Script/Project FIle” from the menu or use the hot key F8.  

 To analyze a code, you can select “Tools > Compile/Analyze 

Current Script/Project File” from the menu or use the hot key F7.  

Note: The “ISCRIPT Analyzer” command outputs detailed information 

related to the results of evaluating every line of an iSCRIPT code for 

debugging purposes, while “ISCRIPT” command does not provide 

detailed output. For this reason, “ISCRIPT” command executes faster 

than the Analyzer. 

 

4.2. A Simple iSCRIPT Program: Calculate “2+3” 

 
In this section, we will introduce the steps required to develop a script for an 

arithmetic and algebraic problem. We use the simple arithmetic problem “2+3=?” 

as our first example. We will write a short iSCRIPT program, which we call 

“main,” to solve this problem. The procedure follows the general procedure 

outlined for arithmetic and algebraic problems in Section 3.1. The steps involved in 

solving this problem are listed below. 

 

 

4.2.1. Using a Program Structure 

1. Open iSCRIPT Editor by selecting the program from the Windows 

“Start” menu. 

2. Create a new file by selecting “File > New” from the menu and save it 

as an “*.isc” file (e.g., math.isc). 

 

Problem 4.1: Calculate “2+3” in iSCRIPT 
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3. In the first line of the file, type the word “program main.” 

4. In line 2, declare a real number variable x by typing “x as real.” 

5. In line 3, type the equation “x=2+3.” 

6. In line 4, type the word “end program.” 

7. Run the program by selecting “Tools >  Run Current Script/Project 

File” from the menu. 

8. After the program is run, the results can be viewed on the screen or in 

the file “outputscript.txt” located in the same folder in which you saved 

the “math.isc” file. 

 

The complete script is presented in Figure 4.2. You can also find the script file 

“math.isc” in the /SampleScripts/Math/Example4.1 subfolder of the iSCRIPT 

installation folder. 

 

 
 

Figure 4.2. iSCRIPT code for the computation of “2+3” using a program structure. 

 

Let’s take a quick took at the code. The first and last lines define a program that has 

the name “main.” The second line declares a real variable “x.” The third line 

evaluates the expression “2+3” and assigns the result to “x.” An output statement is 

not required since iSCRIPT will automatically output the declared variable.  

 

4.2.2. Without a Program Structure  

Follow the same steps as in 4.2.1. However, in the current case, omit steps 3 and 6. 

The resulting program should be as shown in Figure 4.3. 
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Figure 4.3. iSCRIPT code for the computation of “2+3” without a program 

structure. 

 

Table 4.1 gives a few sample mathematical expressions and their corresponding 

iSCRIPT codes. 

 

Math Expression iSCRIPT Code 

  3*15.2 x  
x as real 

x=(2.5-1)*3.0^0.5 

2x  

xxxey x

10log)1ln(sin 

 

x,y as real 

x=2 

y=sin(x)*exp(x)+log(x+1)+log10(x) 








 


5.27.0

3.02.1
A  













3.25.12

7.70.5
B  

ABC   

 

A(2,2),B(2,2),C(2,2) as real 

A=[1.2,-0.3;0.7,2.5] 

B=[5.0,7.7;-12.5,-2.3] 

C=A*B 

 

Table 4.1. Sample mathematical expressions and their iSCRIPT 

equivalents. 
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4.3. Another Simple Problem: Aircraft Drag Calculation 

 
Let’s consider another simple arithmetic problem, involving aircraft drag calculation. 

The problem is described below: 

 

 

 

Problem 4.2: Aircraft Drag Calculation 

 

 

 
Figure 4.4 Aerodynamics Forces on an Aircraft 

 

 
In general, the aircraft drag can be computed by 

 

 
2

2 AV
Cdrag d


    ,  (4.1) 

where 

 

dC  =  drag coefficient, which is usually determined experimentally, in a wind 

tunnel, 

  =  air density, 

V  = velocity of aircraft, 

A  = reference area (the surface area over which the air flows) 

 

Although the drag coefficient is not a constant, it can be assumed to be at low speeds 

(less than 200 mph). Suppose the following data were measured in a wind tunnel: 

 

drag 20,000 N 
  6101  kg/m

3 

V  100 mph 

A  1 m
2 

 

Calculate the drag coefficient, then use the computed drag coefficient to predict how 

much drag force will be exerted on the aircraft at velocities from 0 to 200 mph. 



 28 

To solve this problem in iSCRIPT, we need to write a program that computes the drag 

coefficient Cd from the wind tunnel data. The drag coefficient is then used to 

calculate the drag force on the aircraft at a range of velocities between 0 and 200 

mph.  

 

As for the math problem in Section 4.2, the script may be created with a program 

structure. In iSCRIPT, the program structure starts with a keyword “program 
programname” and ends with a keyword “end program.” The format of the 

program is:  

 

 
program programname 
  
 … 
 
 
end program 
 
… represents one or more lines of scripting language segments and is 

referred to as the body of the program. 

 

 

The first few lines of the program should consist of the variable declaration. In 

iSCRIPT, all of the local variables (with the data type of variable) should be declared 

before any executable statements. The format of data declaration in iSCRIPT is:  

 

 
var1, var2 as type 

 

var1, var2  – variable names satisfying the variable naming convention. 

as – declaration keyword 

type – may take the values: logical, short, long, real, and double (see 

Appendix A.1.1) 

 

 

After the variable declaration, the input data should be assigned to the variables.  

More details about variable names, variable types, and permissible expressions can be 

obtained in the iSCRIPT Language Reference in Appendix A. 

 

With the experimental data assigned, the drag coefficient can be calculated by using 

Equation 4.1. Let us calculate the drag force on the aircraft for 11 velocities evenly 

distributed between 0 and 200 mph. The corresponding drag force results and the 

velocities can be stored in two different arrays. Note that iSCRIPT supports array 

operations and most of the intrinsic functions directly support vector and matrix 

operations. More information on working with arrays is provided in the iSCRIPT 

Language Reference in Appendix A. 
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Figure 4.5. Program outline for problem 4.2. 

 

Figure 4.5 shows the program outline for this problem. You may type this iSCRIPT 

code yourself in iSCRIPT Editor and replace the comment statements of steps 1 

through 4 with the appropriate scripts.  

 

(Note: In iSCRIPT, any line starting with “#” or “%” is a comment line. Any part of a 

line starting with “#” or “%” not within a string quote ‘’ is also a comment. 

Comments are not evaluated and are provided only for the convenience of the 

modeler to communicate details of the model or script to themselves or others.) 

 

While writing the code, you may need to use the decision structure and loop structure. 

iSCRIPT supports decision and loop statements of most popular programming 

languages. For example, the most common decision statement, the if statement, can 

be used in iSCRIPT as 

 

 
if (expression) then 
 … 
else 
 … 
end if 
 

“…” represents one or more lines of scripting language segment 

If expression is true, the first “…” part will be executed. Otherwise, the 

second “…” part will be executed 

 

 

The most common loop statement, the do statement, can be used in iSCRIPT as 

 

 
do ii = expression1 : expression2 
 … 
 
end do 
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“…” represents one or more lines of scripting language segment. 

ii is incremented by 1 and the body of the loop executed until expression1 

is greater than expression2. 

 

 

Other loop and decision structures can be found in the iSCRIPT Language Reference 

in Appendix A. 

 

The complete program for Problem 4.2 is shown in Figure 4.6. If you compare this 

code with Figure 4.5, you can understand the meaning of each part of the code. The 

code can be found in the subfolder /SampleScripts/AircraftDrag/Example4.2 of the 

iSCRIPT installation folder.  

 

 
Figure 4.6. An iSCRIPT program for evaluating the drag on an 

aircraft at a range of low speeds. 

 
To run this code, you can carry out the following steps: 

 

1. Open iSCRIPT Editor by selecting the program from the Windows “Start” 

menu. 

2. Select “File > Open” from the menu. 

 The File Open dialog box appears. 

3. Navigate to the subfolder /SampleScripts/AircraftDrag of the iSCRIPT 

installation folder. 

4. Open the file AircraftDrag.isc. 

5. Select “Tools > Run Current Script/Project File” from the menu. 

6. The results will be shown on the screen when the program is completed. 

You can also find the result in outputscript.txt in the same folder as the 

script file.  

 

To create this code, you can follow the following procedures in Section 4.2, but type 

in the program instructions as shown in Figure 4.6. 
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1. Open iSCRIPT Editor by selecting the program from the Windows “Start” 

menu. 

2. Create a new file by selecting “File > New” from the menu and save it as 

an “*.isc” file (e.g., AircraftDrag.isc). 

3. On the first line of the file, type the word “program main.” 

4. On line 2, declare a real number variable x by typing “x as real.” 

5. On line 3, type the instructions as shown in Figure 4.5. 

6. On line 4, type the word “end program.” 

7. Run the program by selecting “Tools >  Run Current Script/Project File” 

from the menu. 

8. After the program is run, the results can be viewed on the screen or in the 

file “outputscript.txt,” which is located in the same folder in which you 

saved the “AircraftDrag.isc” file. 

 

The results of the calculation are: 
Cd 2.0019 X 10

7
 

V_res (m/s) 0 8.94 17.88 26.82 35.76 44.70 53.64 62.58 71.52 80.46 89.40 

Drag_res (N) 0 800 3200 7200 12800 20000 28800 39200 51200 64800 80000 

    

Analysis of the lines of the program 

 

 
Lines 3 through 6 declare the variables that are used in the program. Accepted 

variable types include logical, short, integer, real, and double. An exhaustive list can 

be found in the iSCRIPT Language Reference in Appendix A. Also notice that 

variables V_res and drag_res are declared as real arrays intended to accommodate 11 

real values. 

 

 
Lines 8 through 11 are called assignment statements. These assign specific values to 

the variables. 

 

 
Line 13 represents the calculation of the drag coefficient. 

 

 
Lines 15 through 18 represent the calculation of the drag for 11 speeds ranging from 

0 to 200 mph. Notice the conversion of the units of speed to SI units (m/s) by 

multiplying by the factor 0.4470. 
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4.4. Another Arithmetic Problem: Circular Cylinder Geometry 

 
We choose the “circular cylinder surface area and volume calculation” problem as 

another example to illustrate the use of iSCRIPT for a simple arithmetic problem. In 

this problem, we will describe how to use the subroutine and function structures in 

iSCRIPT. The problem is described as follows: 

 

 

We will present a crash course in subroutines and functions in this section, so that we 

can use them for the sample calculations being discussed. Please refer to Appendix 

A.5.2 through A.5.5 for more details on subroutines and functions in iSCRIPT. 

iSCRIPT supports the use of subroutines and functions. In iSCRIPT, a subroutine 

may be written as 

 

 
subroutine subroutinename (arg1, arg2, …, argN) 

 variable declaration statements 

 

Problem 4.3: Calculate the Surface Area and Volume of a Circular Cylinder 

 

 

 

 
 

Figure 4.7. Physical problem and its primary variables. 

 

The equations for calculating the surface area S and volume V of a circular cylinder with 

radius r and height h are 

 

 rhrS  22 2       (4.2) 

 

 hrV 2   ,   (4.3) 

 

where 5r  and 10h . 

 

r 

h 
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 … 
 

end subroutine 
 

“…” represents one or more lines of scripting language segments 

arg1, arg2, …, argN are the arguments to the subroutine. 

variable declaration statements represent variable declaration statements 

for the arguments. 

 

 

A subroutine may be called by 

 

 
call subroutinename (arg1, arg2, …, argN) 

 
where arg1, arg2, …, argN are the actual arguments to the subroutine. 

 

 

Similar to a subroutine, a function may be written as  

 

 
function functionname (arg1, arg2, …, argN) 
 variable declaration statements 
 … 
 
 
end function 

 
“…” represents one or more lines of scripting language segment, 

arg1, arg2, …, argN are the arguments to the function. 

variable declaration statements represent variable declaration statements 

for the arguments. 

 

 

Functions may be called simply by using them in an expression in lieu of a variable. 

 

 
The statement 

var = functionname (arg1, arg2, …, argN) 
 

where arg1, arg2, …, argN are the actual arguments to the function, 

assigns the value of the function to the variable “var.” 

 

 

To solve this problem, it is convenient to create a function (get_area) to calculate the 

surface area of the cylinder, and a subroutine (get_volume) to calculate the volume of 
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cylinder. The complete code is shown in Figure 4.8. The calls to the function 

get_area and the subroutine get_volume are in lines 9 and 11 of the main program. 

Lines 15 to 24 define the get_area function. Note that the type of the function is 

declared on line 17 (get_area as real). This is required when writing a function in 

iSCRIPT. Lines 26 to 35 define the get_volume subroutine. Note that the return value 

of (volume) must be an argument of the subroutine. This value will be computed 

when the program is executed and the computed value will be returned to the main 

program. 

 

Note: 

 For the subroutine/function, the names of the dummy arguments and the 

actual arguments do not have to be same, but they are required to have the 

same type. 

 In iSCRIPT, at runtime, the values of the actual arguments, if modified within 

the subroutine, are returned to the calling program or subprogram. 

 After control is returned to the calling routine, the local variables in the 

subroutine or function are automatically freed. 

 

 
 

Figure 4.8. iSCRIPT program for evaluating the cylinder geometry. 

 

This code can be found in the subfolder /SampleScripts/CircularCylinder/Example4.3 

of the iSCRIPT installation folder. Follow these steps to run the code: 
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Step 1.               Open iSCRIPT Editor. 

Step 2.   Select “File > Open” from the menu. 

 The File Open dialog box appears. 

Step 3.   Navigate to the subfolder 

/SampleScripts/CircularCylinder/Example4.3 of the iSCRIPT installation 

folder. 

Step 4.   Open the file CircularCylinder.isc. 

Step 5.   Select “Tools > Run Current Script/Project File” from the menu. 

 

The results for the surface area and volume are 471.2389 and 785.3982, respectively. 
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5. Engineering Component Modeling in 

iSCRIPT 

 
In this chapter, we present the component modeling technique in iSCRIPT. Examples 

are given to show the procedure for creating and executing engineering component 

modeling mode in iSCRIPT. The procedure for developing an iSCRIPT solution in 

several script files is also presented. 

 

5.1. Component Modeling in iSCRIPT 

 
iSCRIPT has features that allow you to define components and the variables 

associated with the components. These variables will have an engineering context 

including limits (constraints), as well as engineering units, where appropriate. To 

complete the modeling of a component, a component subprogram must be written 

that contains the equations to model the component. The model equations for a 

component can be evaluated with the statement Component.Execute. 

 

In iSCRIPT, a component is declared by using a CreateComponent statement. All 

components of a system must be declared in the main program. 

 

CreateComponent (component_name [,description]) 

Note: Segments enclosed in square brackets are optional and may be 

omitted. 

component_name –  A name for the component (a string limited to 

24 characters). Two components may not have the same 

name. Component names obey the same formation rule 

as those for variables. 

description –  A description for the component (a string limited to 50 

characters). Optional. 

 

 

After the component is declared, variables can be attached to this component by using 

a CreateVariable statement.  

 

CreateVariable (component_name, variable_name [,type] 
[,dimension] [,size] [,upper_bound] [,lower_bound] 
[,default_value] [,unit]) 

Note: Segments enclosed in square brackets are optional and may be 
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omitted. 

component_name – The component to which the variable belongs (a 

string limited to 24 characters). Two component 

variables may not have the same name. Component 

variable names obey the same formation rule as those 

for variables. 

variable_name –  A name for the variable (a string limited to 24 

characters). Two components may not have the same 

name. Component names obey the same formation 

rule as those for variables. 

type –  A string accepting values such as “integer,” “real,” 

“double.” A complete list of variable types can be 

found in Appendix A.1. This argument is optional. 

When not provided, component variables are 

assumed to be double values. 

dimension –  Variable dimension for an array variable (integer). 

For example, a 2D matrix will have a dimension of 2. 

This argument is optional for scalar variables 

(dimension = 0 is default). 

size –  Size for an array variable. This argument accepts a 

group of integers in a bracket separated by a 

semicolon “;” with a limit of five integers. For 

example, a 3 x 3 matrix will have a size of (3;3). This 

input is required when dimension > 0. 

upper_bound –  An upper bound for the variable (all the variables for 

an array variable). This argument is optional. 

lower_bound –  A lower bound for the variable (all the variables for 

an array variable). This argument is optional. 

default_value –  A default value for the variable (all the variables for 

an array variable). This argument is optional. 

unit –  A string representing the engineering unit for the 

variable (e.g. m/s). This argument is optional and is 

should be limited to 20 characters, if provided. 

 

 

A component may have several variables. A component variable can be referenced by 

using: 
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ComponentName.VariableName 

Example: 

Cylinder.radius = 5 

Cylinder.height = 10 

Cylinder.Area = 2*pi*(Cylinder.radius+Cylinder.height) 

 

A component variable can be used and its value can be changed in any program, 

subprogram, or component. 

 

Each component must have a unique subroutine that has the same name as the 

component name. The component subroutine requires no argument. This subroutine is 

automatically executed once the Execute command is called: 

 

Component_Name.Execute 

or 

Call Component_Name.Execute 

 

The component may also be optimized by using the Optimize command as follows: 

 

 

 

 

 

 

 

 

 

 

With the above statements, iSCRIPT provides a component modeling method for the 

design and optimization of a complicated system. A large system can be decomposed 

into several components and each component is modeled in its own executable 

subprogram. We will give an example in the next section to illustrate how to use this 

component modeling technique to solve a real problem. 

 

 

Component_Name.Optimize 

or 

Call Component_Name.Optimize 
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5.2. Creating Subsystems and Systems in iSCRIPT 

 
Conceptually, subsystems have the same data structure and properties as components.  

They include variables at the subsystem level similar to component variables. The 

subsystem variables are variables at the subsystem level that cannot be isolated within 

any of the components. For instance, in an airframe subsystem consisting of 

components including, say, a fuselage, wind, tail, and ailerons, the total surface area 

as a variable would be a subsystem variable. On the other hand, the wing span, sweep 

angle and thickness would be the wing component’s variables and the fuselage length 

and diameter would be the fuselage component’s variables. Subsystems are also 

declared using the CreateComponent command, and subsystem variables are also 

declared using the CreateVariable command. The way subsystems differ from 

components is that they have other components associated within them. The 

association is indicated using the AddSubComponent command. However, this 

formal association is only necessary for optimization tasks (Chapter 6 and Problem 

6.2 of Section 6.3). The mere evaluation of the subsystem model consisting of the 

evaluation of its component models is sufficient for the performance analysis of the 

subsystem (see Figure 5.12 of Section 5.6).  

 

Systems do not need to be declared in iSCRIPT. By default, each iSCRIPT project is 

considered to be a system. All subsystems (and their components) declared in a 

specific project are therefore assumed to belong to the system. Problem 5.3 illustrates 

the relationship between components, subsystems, and systems in iSCRIPT. 

 

5.3. Solving a Problem Using Component Modeling or Decomposition 

Method 

 
We still use the “circular cylinder surface area and volume calculation” problem of 

Section 4.4 to illustrate the procedure. We will now solve that same problem using 

the component method. 

 

 
For this problem, we define a single component Cylinder, which has four component 

variables: radius, height, surface_area, and volume. The detailed procedure to solve 

the problem follows the general procedure in Section 3.2. The steps are as follows: 

 

Step 1. Open iSCRIPT Editor. 

Step 2. Create a new file and save it as an “*.isc” file. 

Step 3. Type the words “program main” and “end program” to create a main 

program. In the body of the main program: 

a. declare the Cylinder component by using CreateComponent 
statement 

 

Problem 5.1: Solve Problem 4.4 Using the Component Technique in iSCRIPT 
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b. declare the four component variables (radius, height, surface_area, 

volume) of the Cylinder system using CreateVariable statement 

c. assign the input values for Cylinder.radius and Cylinder.height 

d. type “Cylinder.Execute” to evaluate the component. 

Step 4. After the main program is written, type the words “subroutine 
Cylinder()” and “end subroutine” to create the system subroutines for 

the Cylinder system. In the body of the subroutine: 

a. type in the equations to calculate the surface area and volume. 

Step 5. Save the file. 

Step 6. Select “Tools > Run Current Script/Project File” from the menu to run 

the iSCRIPT code. 

Step 7. Find the solution on the screen or in the file “outputscript.txt.” 

 

The first part of the main program should consist of the component declaration of the 

Cylinder component using a CreateComponent statement, and the declaration of its 

four component variables using a CreateVariable statement. Then, the cylinder 

radius and height should be assigned. The Cylinder component may be executed to 

calculate the surface area and volume by using Cylinder.Execute. Beside the main 

program, an executable subroutine, which has the same name “Cylinder,” should be 

created for the “Cylinder component” to compute the surface area and volume.  

 

Figure 5.1 shows the program outline for this problem. You may replace the comment 

statements of steps 1 through 5 with your own iSCRIPT code segment to complete 

the program. A sample completed program is shown in Figure 5.2. 

 

 
 

Figure 5.1. Program outline for Problem 5.1. 

 

We will now compare the script in Figure 5.2 with the program outline in Figure 5.1. 

Line 4 is the statement used to create the component, and Lines 5 through 8 describe 

the variables of the component. Note that here we have used only three parameters 

with the CreateVariable statment: component name, variable name, and variable 

type. We chose to not supply other additional, optional properties of the variables, 
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including providing a default value, setting limits or constraints on the variables, or 

providing an engineering unit. The default value in this case will be automatically set 

to be zero. In later problems, we will demonstrate how to use those properties of the 

iSCRIPT component variable. 

 

 
 

Figure 5.2. iSCRIPT program for Problem 5.1. 

 

Line 13 contains a statement to evaluate the component. 

 

Lines 17 through 26 represent the actual model of the component implemented as a 

subroutine with the same name as the component. This subroutine includes statements 

implementing the equations to compute the surface area and volume. Note the way in 

which component variables are used, compared to the procedure for Problem 4.3 in 

Section 4.4. 

 

The script file can be found in the subfolder /SampleScripts/ 

CircularCylinder/Example5.1 of the iSCRIPT installation folder. If the program is 

run, the same result as in Problem 4.3 will be obtained.  

 

5.4. Writing a Program in Several Script Files 

 
iSCRIPT allows you to write a program in several files. Actually, this is highly 

recommended when the program contains several components. This will make the 

program more portable and easy to manage in a shared project environment. In 

addition, a component file can easily be re-used or shared by other systems that have 

the same component. It is also easy to add new components to the current system or 
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modify the available components since the program structure matches the engineering 

decomposition (physical, conceptual, or disciplinary) of the system. 

 

To link all the script files to a project, the user must write a single project file (*.ipr), 

which records the name and path information of all the script files. The project file 

must start with a keyword “Project” in the first line and each line can only contain the 

one script file name, while the path of each script file must be included with the file 

names (if all of the files are not in the same folder as the project file). Figure 5.3 

shows an example of a project file. Note that the subfolders “PS”, “OLS”, “CHS”, 

“ECS”, VCPAOS”, “FLS”, and “AFS” are subfolders of the project file ata.ipr. 

 

 
 

Figure 5.3. An example of a project file. 

 

To run a problem with a project file, simply open the project file and select “Tool >  

ISCRIPT” from the menu to run the whole project.  

 

Note:  

 In a project, there must be a program in a script file which will be the starting 

point of the program execution.  

 If a script file is in the same folder as the project file, the directory or path 

information may be neglected (e.g., “main.isc” in Figure 5.3). 

 The order of the script files is not important. 

 

5.5. An Example of a Program Developed in Several Script Files 

 
Here again, we use the Circular Cylinder problem as an example. 

 

 

The code developed in Problem 4.3 has one main program, one function, and one 

subroutine. These three program structures can each be written in a separate file. 

Thus, together with a project file, this project will now be written in 4 files. These file 

are listed in Figures 5.4 through 5.7. 

 

 

Problem 5.2: Solve Problem 4.3 Using Several iSCRIPT Files 
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Figure 5.4. Project file Cylinder.ipr for Problem 5.2. 

 

 
Figure 5.5. Script file Cylinder.isc for Problem 5.2. 

 

 
Figure 5.6. Script file Area.isc for Problem 5.2. 

 

 
Figure 5.7. Script file Volume.isc for Problem 5.2. 

 

The code can be found in the subfolder /SampleScripts /CircularCylinder/Example5.2 

of the iSCRIPT installation folder. Follow the procedures below to run this code: 

 

 Open iSCRIPT Editor. 
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 Select “File > Open” from the menu. 

 The File Open dialog box appears. 

 Navigate to the subfolder /SampleScripts/CircularCylinder/Example5.2 of 

the iSCRIPT installation folder. 

 Open the file Cylinder.ipr. 

 Select “Tools > Run Current Script/Project File” from the menu. 

 

If the program is run, same result will be obtained as in Problem 4.3. 

 

5.6. An Example of a System with Several Components 
 

We will use a heat rejection system to illustrate performance analysis of a system 

with several components. 

 

 

 

Problem 5.3: Calculating the Cost of a Heat Rejection System 
 

The system is illustrated in Figure 5.8. 

 

Turbine

w kg/s

A m2

t oC

Condenser

Cooling

Tower

Turbine
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Condenser

Cooling

Tower

 
Figure 5.8. Cooling tower, pump, and condenser system of a heat rejection system. 

 

The objective is to evaluate the initial plus operating costs of the system. The heat-

rejection rate from the condenser is provided as 14MW. The following costs in 

dollars are included in the problem description: 
 

 Initial cost of cooling tower, 800A0.6
, where A = area, m

2
 

 Lifetime pumping cost, 0.0005w3
, where w = flow rate of water, kg/s 

 Lifetime penalty in power production due to elevation of temperature in 

cooling water, 270t, where t = temperature of water entering the condenser, 
o
C.  

 The rate of heat transfer from the cooling tower can be represented adequately 

by the expression q = 3.7w1.2tA (W). 
 

Assume A=170 m
2
 and w=200 kg/s. What is the total cost of the system? 
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The heat rejection system can be physically decomposed into three components: 

cooling tower, pump, and condenser, as illustrated in Figure 5.8. Note that in a 

detailed model, each of the components may be subsystems comprised of other 

components. 

 

 
 

Figure 5.9. Decomposition of the system. 

 

By virtue of the physical decomposition strategy adopted, the total cost Csys can be 

represented as 

 

  condenserpumptowersys CCCC    .   (5.1) 

 

For the cooling tower, the cost is  
 

6.0800ACtower    .    (5.2)  

 

For the pump, the cost is  
 

30005.0 wC pump    .    (5.3) 

 

For the condenser, the cost is  
 

tCcondenser 270   .    (5.4) 

 

The unknown variable t is calculated by the energy balance between the condenser 

and cooling tower: 

 

condensertower QQ      (5.5) 

 

tAwQtower

2.17.3   .    (5.6) 

 

This problem assumes that the temperature of the water leaving the cooling tower is 

equal to the temperature of the water entering the condenser (i.e., there is no 

temperature change in the pump).  

 

Heat Rejection 

System 

Cooling Tower 

Component 

Pump 

Component 

Condenser 

Component 
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     condensertower tt      (5.7) 

 

The iSCRIPT code modeling the above system is developed to be consistent with 

the decomposition procedure adopted for the design. The variables used for the 

system and each of the subsystems are summarized in Table 5.1 below.  

 

System Variable Remarks 
Heat Rejection 

System 

Csys The total cost of the heat rejection system 

w Flow rate of cooling water (kg/s) 

Components Variable  
Tower Ctower First cost of cooling tower 

A Area of cooling tower (m
2
) 

Qtower Heat rejection rate of the cooling tower (W) 

tout Temperature of water leaving the cooling tower (°C) 

Pump Cpump Life time pumping cost 

Condenser Ccondenser Life time penalty in power production due to elevation of 

temperature of cooling water 

Qcondenser Heat absorption rate of the condenser (W)  

tin Temperature of water entering the condenser (°C) 

 

Table 5.1. Components and variables of the heat rejection system. 

 

The development of the iSCRIPT code follows the general procedures in Section 3.2. 

The outline of the script program is shown in Figure 5.10. The problem has one 

system, HR_sys, and three components: Tower, Pump, and Condenser. Both the 

system and the components, and their variables, need to be declared. Each component 

must be simulated in its own component subroutine. The component and component 

variable declaration are done in the main program. 
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Figure 5.10. Program outline for Problem 5.5. 
 

The complete code is written in six files (project file, main program file, HR_sys 

system file, Tower component file, Pump component file, and Condenser component 

file), and are shown in Figures 5.11 through 5.16. 

 

 
Figure 5.11. The project file for Problem 5.5. 
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Figure 5.12. The main program for Problem 5.5. 

 

In the main program, the upper bound, lower bound, and default values of the 

component variables are set during the component variable declaration by using 

CreateComponent statement. These values are summarized in Table 5.2 below. 

 

System and 

Component 
Variable 

Upper 

Bound 

Lower 

Bound 

Default 

Value 
Remarks 

Heat Rejection 

System 

Csys 1.0E9 0 0 1. The upper bound and lower bound of 

a design variable is selected to fit the 

design constraints. 

2. The default value can be assigned 

during the variable declaration to 

avoid extra input value assignments in 

the body of the program 

3. The upper and lower bounds of 

unconstraint variables can be set to be 

large or smaller enough so that the 

variables can never reach the 

constraints.   

w 500.0 10.0 220.0 

Tower 

Ctower 1.0E9 0 0 

A 500.0 10.0 105.0 

Qtower 1.0E9 0 0 

tout 500 0 0 

Pump Cpump 1.0E9 0 0 

Condenser 

Ccondenser 1.0E9 0 0 

Qcondenser 10E9 0 0 

tin 500 0 0 

Table 5.2. The upper bound, lower bound, and default values provided for the 

component variables in Problem 5.5. 
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Figure 5.13. The subsystem program for Problem 5.5. 

 

 
Figure 5.14. The tower component evaluation program for Problem 5.5. 

 

 
Figure 5.15. The pump component evaluation program for Problem 5.5. 

 

 
Figure 5.16. The condenser component evaluation program for Problem 5.5. 

 

The code can be found in the subfolder /SampleScripts/HeatRejection/Example5.3 of 

the iSCRIPT installation folder. Follow the steps below to run this code: 

 

1. Open iSCRIPT Editor. 

2. Select “File > Open” from the menu. 
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 The File Open dialog box appears. 

3. Navigate to the subfolder /SampleScripts/HeatRejection/Example5.3 of the 

iSCRIPT installation folder. 

4. Open the file HeatRejection.ipr. 

5. Select “Tools > Run Current Script/Project File” from the menu. 
 

The result obtained is $31,846.19 for the total cost of the system. 
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6. Optimization in iSCRIPT 

 
In this chapter, we introduce the optimization procedure in iSCRIPT. Two examples 

will be given to illustrate system optimization. 

 

6.1. Optimization Based on Component Modeling 

 
iSCRIPT’s built-in optimization procedure is based on the decomposition of systems 

into components. iSCRIPT can optimize a single component or a large system 

containing several subsystems or components by using the integrated local global 

optimization (ILGO) technique. In its most basic form, every iSCRIPT optimization 

job must consist of one system and at least one subsystem consisting of at least one 

component. (By inference, the system-subsystem-component hierarchy for the most 

basic job is then represented by one component which is also the subsystem, which is 

the system.) 

 

To optimize a component or subsystem, we must indicate the variable that should be 

maximized or minimized. This variable is termed the “objective variable” and is 

indicated by using the AddObjective statement. The details of this statement are as 

follows: 
 

AddObjective (component, variable [,maxmin]) 

Note: Segments enclosed in square brackets are optional and may be 

omitted. 

component --  The component to be optimized (a string limited 

to 24 characters). This component must be a 

component previously declared with the 

CreateComponent command. 

variable --  Name of the objective variable (a string limited to 

24 characters). This variable must be a variable 

previously declared for this component using the 

CreateVariable command. 

maxmin --  0 or 1. Indicates whether this is a minimization or 

maximization objective. Use 0 to minimize and 1 

to obtain a maximum. This argument is optional. 

The default value is 0. 
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After the objective variable has been indicated, we also need to indicate which 

variables are free for optimization. These are the variables whose values can be varied 

in order to obtain the optimum value of the objective function. The variables are 

referred to as optimization or decision variables and are indicated by the 

AddVarObjective statement. The details of this statement are as follows: 

 

AddVarObjective (component, variable [,delta]) 

Note: Segments enclosed in square brackets are optional and may be 

omitted. 

component --  The component to which the variable belongs (a 

string limited to 24 characters). This component 

must be the component that will be optimized, or 

a subcomponent of it (see Section B.2.6). This 

component must be a component previously 

declared with the CreateComponent command. 

variable --  Name of the variable (a string limited to 24 

characters). This variable must be a variable 

previously declared for this component using the 

CreateVariable command. 

delta --  This parameter further narrows the optimization 

search space for the optimization variable. If the 

optimization variable x were defined by 

CreateVariable to have the lower and upper 

bounds L and M, respectively, then  MLx , , 

and the size of the search space is M – L. The 

parameter, , will narrow this space to from [L, 

M] to  ),(),,(  ii xMMINxLMAX , where 

xi is the default value of x, a computed initial 

value for x, or the value of x after a prior 

optimization step. This parameter may be used to 

further reduce the search space after a prior 

optimization step (or after an initial computation 

designed to obtain a good initial estimate 

narrowing the range of the optimum value of x) to 

speed up the optimization process.  
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Note:  

 The objective and optimization variable are previously-declared component 

variables. 

 There can be more than one optimization variable. Note that the fewer 

optimization variables there are, the faster the optimization will complete. 

Also, the smaller the search space of the optimization variable, the faster the 

optimization will complete. 

 

After both the objective variable and the optimization variables are declared by 

AddObjective and AddVarObjective statements, the optimization calculation is 

executed by using the statement 

 

Component.Optimize 

 

6.2. Optimization of a System with a Single Component 

 
Let us continue to use the Circular Cylinder problem for the example. The model 

used for the components of the system are very rudimentary, but serve to illustrate 

how iSCRIPT can be used to model engineering systems. The problem is revised as 

follows: 

 

 

The procedures required to solve this problem follow the general procedure presented 

in Section 3.3. The steps are as follows: 

 

Step 1. Open iSCRIPT Editor. 

Step 2. Create a new file and save it as an “*.isc” file. 

Step 3. Type the words “program main” and “end program” to create a main 

program. In the body of the main program: 

a. declare the Cylinder system by using CreateComponent statement 

b. declare the four component variables (radius, height, surface_area, 

volume) of the Cylinder system using CreateVariable statement 

c. assign the input value for Cylinder.volume. 

e. declare the objective variable Cylinder.surface_area by using 

AddObjective statement 

f. declare the optimization variable Cylinder.radius by using 

AddVarObjective statement 

g. type “Cylinder.Optimize” to optimize the overall system. 

 

Problem 6.1: Minimize the Surface Area of a Circular Cylinder with a Fixed Value 

of Volume of 800 m
3
. 
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Step 4. After the main program is written, type the words “subroutine 
Cylinder()” and “end subroutine” to create the system subroutines for 

the Cylinder component. In the body of the subroutine: 

a. type the equations for the height and surface_area. 

Step 5. Save the file. 

Step 6. Select “Tools > Run Current Script/Project File” from the menu to run 

the iSCRIPT code. 

Step 7. View the output on screen or in the file “outputscript.txt.” 

 

Note that the only input variable for this problem is the volume. The task is to 

determine values of the other variables (r and h) that minimize the surface area of the 

model (cylinder). These (decision) variables do not require input values. The 

objective variable is the surface_area and the optimization variable is the radius. The 

height is a dependent variable computed from the volume and radius.  

 

In the main program, the Cylinder component and its four component variables are 

declared first. The input values are then assigned, followed by the declaration of the 

objective and optimization variables. The last part of the main program is the 

optimization calculation.  

 

In the Cylinder component model, the height of the cylinder is computed from the 

volume and the radius. Then the value of the objective variable surface_area is 

calculated. Figure 6.1 shows the program outline for this problem. 

 

 
 

Figure 6.1. Program outline for Problem 6.1. 

 

The complete code is shown in Figure 6.2. If you compare it with the code in Figure 

6.1, the meaning of each statement is obvious. 
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Note: 

 The genetic algorithm in iSCRIPT will be used for the optimization 

procedure. Details of the genetic algorithm are provided in Appendix B.2.10. 

 Since the optimization includes a search process with many iteration steps, 

both the objective variable and optimization variable must be set with a 

reasonable upper bound and lower bound (constrained). This is done in the 

component variable declaration statement.  

 The speed and accuracy of the optimization will be increased if the range of 

the optimization variable is small and its default value is close to optimum 

value. (Care must be taken to ensure that the optimum value lies inside the 

constraint or domain of the optimization variable. Simply making the domain 

large enough will take care of this requirement. For instance, specifying a 

radius that lies within the range of 0 to 100 is a safe range within which the 

optimum radius will lie.) 

 

 

 
 

Figure 6.2. The complete code for Problem 6.1. 
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The code can be found in the subfolder /SampleScripts/CircularCylinderExample6.1 

of the iSCRIPT installation folder. Follow these steps to run this code: 

 

1. Open iSCRIPT Editor 

2. Select “File > Open” from the menu. 

 The File Open dialog box appears. 

3. Navigate to the subfolder /SampleScripts/CircularCylinder/Example6.1 of 

the iSCRIPT installation folder. 

4. Open the file CircularCylinder.isc. 

5. Select “Tools > Run Current Script/Project File” from the menu. 

 

The code returns the values of the minimized surface area and the corresponding 

cylinder radius as 477.06172 and 5.030, respectively. Note that due to the fact that a 

genetic algorithm is used, the results may change slightly with each execution. Also, 

note that default values of the optimization parameters in iSCRIPT have been used 

(which is why no parameters are specified). These defaults are usually acceptable for 

most problems. Details of the parameters are given in Appendix B.2.11. 

 

The analytic results can be derived by differentiating the following equation and 

setting the value to zero to derive the optimum. 

 

   









2
22

r

V
rrhrS


      (6.1) 

 

For this problem, the analytical results are 0308.5
2

3 


V
r  and 

  0617.47723
3/13/2  VS , respectively. 

 

Although the analytic results are easily obtained, note the speed of the genetic (GA) 

optimization procedure used by iSCRIPT in calculating the results and the accuracy 

of the results. Conventional wisdom would claim that GA procedures are robust but 

take significantly longer to converge or compute the optimum of continuous functions 

compared with gradient-based methods. However, the unique GA procedure in 

iSCRIPT has been tuned to perform exceptionally well, even for continuous 

functions, while retaining the robustness expected of a GA procedure. 

 

6.3. Optimization of a System with Multiple Components 

 
Let us now consider a problem that contains more than one component. The heat-

rejection system design problem in Problem 5.3 is used.  

 

 

Problem 6.2: Minimize the Cost of the Heat Rejection System in Problem 5.3 
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The objective variable of the problem is the total cost Csys of the Heat Rejection 

System. There are two optimization variables: flow rate of water, w, of the Heat 

Rejection System and the area, A, of the Cooling Tower component. The objective 

function of this problem may be expressed as 

 AwfCsys , .    (6.2) 

The goal is to seek the optimum values of w and A that will minimize Csys. 

 

Note that in this problem, we have two optimization variables and they belong to 

different components. Therefore, we need to indicate the relationship between the 

Heat Rejection System and the Cooling Tower component. This is done by indicating 

which components belong to each subsystem. In a multi-subsystem environment, 

several subsystems may be present in the entire system, and the subsystem 

composition must be indicated. Otherwise, it would be impossible to determine which 

component belongs to which subsystem. In the current example, there is only one 

subsystem, thus this is also the system. The subsystem composition is indicated using 

the AddSubComponent command. 

 

The component-subsystem-system relationship in iSCRIPT is summarized below: 

 

 Every iSCRIPT project is assumed to contain one system (a system is 

automatically created per project) 

 All subsystems in a project automatically belong to the system. If there is 

only one subsystem, then this subsystem comprises the system.  

 The component-subsystem relationship or hierarchy is formalized using the 

AddSubComponent command.  

 

The format for the AddSubComponent command is shown below: 

 

The goal of the problem is to find the optimum value of A and w that will minimize 

the total cost C.  
 

AddSubsystem (component, subcomponent ) 

component --  The component consisting of other components or 

subsystem (a string limited to 24 characters). This 

component must be a component previously 

declared with the CreateComponent command. 

subcomponent --  A component to be identified as a subcomponent of 

a component. This component must be a 

component previously declared with the 

CreateComponent command. 
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Figure 6.3. Program outline for Problem 6.2. 

 

The program outline is shown in Figure 6.3 above. Compared with Problem 5.3, we 

only need to make the following changes in the main program: 

 

 Indicate the objective variables using AddObjective. 
 Indicate the optimization variables using AddVarObjective. 
 Start the optimization calculation using HR_sys.Optimize. 
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Figure 6.4. The main program for Problem 6.2. 

 

Figure 6.4 is the complete code for the main program. Since all of the other files are 

the same as those in Problem 5.3 (component models are portable from solution to 

solution), only the main program file is provided here.  

 

Note the keywords Global.maxPopulation, Global.maxInitialEvaluations, 
Global.maxGenerations, Global optconvergencelimit, Global,mutationfreq, 
sampsizepervariable, and Global.maxILGOsteps are the parameters to control the 

performance (speed and accuracy) of the GA optimization calculation. The default 

values are usually sufficient to solve most problems. The default values are provided 

in the iSCRIPT Optimization Reference in Appendix B.2.11. However, in the above 

program, we have modified these defaults to obtain results faster. Detailed 

information of these parameters can also be found in Appendix B.2.11. 
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The scripts solving this problem can be found in the subfolder 

/SampleScripts/HeatRejection/Example6.2 of the iSCRIPT installation folder. Follow 

these steps to run the code: 

 

1. Open iSCRIPT Editor. 

2. Select “File > Open” from the menu. 

 The File Open dialog box appears. 

3. Navigate to the subfolder /SampleScripts/HeatRejection/Example6.2 of the 

iSCRIPT installation folder. 

4. Open the file HeatRejection.ipr. 

5. Select “Tools > Run Current Script/Project File” from the menu. 

 

The optimization calculation requires a few seconds to run. The final result is 

contained in the file outputscript.txt. The results are compared with those from 

Stoecker [5] in Table 6.1 below. 

 

 A w Csys 

Stoecker 202.6 167.9 53812.6 

iSCRIPT 202.52 167.95 53829.6 

 

Table 6.1. Comparison of iSCRIPT optimization results for Problem 6.2 with those 

from Stoecker [5]. 

 

Details of the optimization process are contained in the file optimize.txt. The details 

include the initial values of the optimization variables and the objective function, the 

various realizations of the system, the array of viable systems or realizations 

(population of individuals in genetic algorithm parlance) by generation or as the 

optimization progresses, and the final results. A sample optimize.txt file is illustrated 

in Figure 6.5 below. 
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Figure 6.5. Sample optimize.txt output file. 

 

The sample problem described in this section is a simple one. In this problem, the 

overall objective function can be expressed as a single equation,  

 

 
  







 


Aw
wAAwfCsys 2.1

6
36.0

7.3

1014
270005.0800,   .  (6.3)  

 

Therefore, the advantages of decomposition may not be apparent. On the other hand, 

a realistic industrial design/optimization problem could contain many components 

and a large number of variables. A system may contain several subsystems and the 

coupling between these subsystems may be complicated. iSCRIPT’s decomposition-

based modeling approach and ILGO optimization algorithm provide a way to handle 

these kinds of complicated system design and optimization problems. 
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7. Running iSCRIPT in Parallel 

iSCRIPT can execute programs automatically in a parallel environment (without the user 

actually parallelizing their codes). However, currently, only the optimization portion of a 

program actually executes in parallel. Optimization commands are computationally 

intensive for fairly sized system models. As a result, executing them in parallel provides 

significant reduction in the time to obtain solutions. For instance, a program named 

ADVISOR, implemented in MATLAB, which simulates in-detail the model for an 

automobile drive train system, is reported to take about 25 seconds to run on a fairly 

sized PC. Optimizing such a program (which is doubtlessly a mixed integer non-linear, or 

MINL, problem) may require up to 40,000 evaluations of the model. This would result in 

a total time of about 11 days to obtain results. In a parallel environment, using 12 

processors, results may be obtained in as quickly as 24 hours.  

Any iSCRIPT program that can run on a single-processor computer can execute in 

parallel in a multi-processor environment. However, currently, only the optimization 

portion of the program gains from the parallel environment. This means that programs 

without any optimization calls will simply execute multiply on all the processors. 

The system requirement for running iSCRIPT in parallel is described in the next section 

while procedures for running iSCRIPT programs in parallel is described in Section 6.2. 

7.1. System Requirements 

The iSCRIPT executable imparted with automatic parallel features and algorithm is 

named iscript_mp.exe. This program must be run on a computer (or network of 

computers) on which MPI has been set up. The complete requirements are as follows: 

 iSCRIPT parallel executable (iscript_mp.exe, which is available from an iSCRIPT 

installation). 

 Computer or network of computers on which MPI has been set up. Ideally, this 

should be a multi-processor environment, but MPI is also able to work on a 

single-processor installation, spawning virtual processes simulating a multi-

processor environment. 

 Each computer (or the single computer simulating a parallel environment) should 

be at least a Pentium PC running at a speed of at least 1GHz, with at least 128MB 

ram and 200MB free disk space. 

7.2. Running an iSCRIPT Program in Parallel 

The syntax for running an iSCRIPT program in parallel is as follows: 
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mpirun –np # iscript_mp.exe 
 

or 

 

mpirun –np # iscript_mp.exe program.isc 
 
or 

 

mpirun –np # iscript_mp.exe program.ipr 
 

In the above syntax, 

 

 # is the required number of processors. 

 program.isc is any iSCRIPT program file. 

 program.ipr is any iSCRIPT project file. 

 If the first syntax is used, the iSCRIPT parallel program will initially (interactively) 

query the user for the script or project that the user wishes to execute in parallel. 

7.3. A Sample Optimization Problem Run in Parallel 

Any iSCRIPT program that can run on a single processor computer can execute in 

parallel in a multi-processor environment. This example illustrates the use of iSCRIPT in 

optimizing a problem in parallel. 

 

This sample problem file contains a main program and a subroutine that evaluates a 

model. The model is the Rastrigin equation, shown in Equation 6.1 below. 

 

)2cos2(cos1020)( 21

2

2

2

1 xxxxxf       (6.1) 

 

 
Figure 6.1. Plot of the Rastrigin function. 

Global minimum 
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This function has several local minima, making it difficult for a gradient-based procedure 

to capture the actual minimum without the benefit of a good starting or guess value. The 

actual minimum value is 0 and occurs at the values of (x1, x2) =  (0,0). 

 

Figure 6.2 below shows the iSCRIPT program for finding the optimum of the Rastrigin 

function. 

 

 
Figure 6.2. iSCRIPT program for finding the optimum of the Rastrigin function. 

 

The program is created in a single file (rastrigin.isc) with the following parts: 

 

Main Program 

The main program starts on Line 3 with the statement “program main” and ends on line 

31. 
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The first part of the main program (Lines 9 through 12) indicates a component with three 

variables, x1, x2, and y. This problem is considered to be a system consisted of one 

subsystem with a single component. 

 

This part of the program also identifies y as the objective function and (x1, x2) as 

variables to be optimized in achieving the minimum value of the objective function 

(Lines 14 through 17). 

 

The second part of the program sets the optimization parameters (Lines 22-27) and 

optimizes the component (Line 29). 

 

Component Model 

The function (or component) is modeled in subroutine Rastrigin (Lines 34 through 41). 

 

Variables are declared and initialized in Lines 33 through 39 of the program. 

 

Equation 6.1 is implemented in Line 41 of the program. 

 

Output 

Again, the output file is outputscript.txt. The correct results were obtained in about 2.9 

seconds on a Pentium workstation using only a population of 70 realizations. 

 

Details of the optimization process are recorded in the file optimize.txt. These details 

include the initial values of the objective variable and the optimization variables, the 

various realizations of the system being evaluated, the array of viable systems or 

realizations (population of individuals in genetic algorithm parlance) by generation or as 

the optimization progresses, and the final results. A sample optimize.txt file is illustrated 

in Figure 6.3 below. 

 

 
 

Figure 6.3. Sample optimize.txt output file. 
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8. Interface with Other Software 
 

8.1. Purpose 

iSCRIPT provides several methods for interfacing with other third-party software. 

This is extremely important in providing functionality as a system-of-systems tool for 

engineers. The methods in iSCRIPT for interfacing with other software include: 

1. Open a process and execute the third-party executable directly. This method is 

universal and works for any third-party software, as long as the software can be 

opened from a shell or the command line. 

2. Provide direct interface to specific software include Microsoft Excel, TTC 

Technologies’ INSTED software programs and Database, and TTC Technologies’ 

AEROFLO multi-disciplinary CFD program. 

3. Providing the syntax support necessary to run scripts developed in other 

environments (such as MATLAB) directly in iSCRIPT with minimum 

modification. 

The procedures for executing a third-party executable are described in the next 

section. 

 

8.2. Running a Third-Party Software or Executable 

An external or third-party executable may be activated in iSCRIPT as if from a 

command line using the execute command. The syntax is shown below. 

call execute (‘executable_filename’, [‘commandline_argument’]) 
 

or 
 

iresult =  execute (‘executable_filename’, [‘commandline_argument’]) 
 

The above rules govern the process of calling the open command. 

 

 executable_filename is a string representing the executable file. The string 

may include the path if the file is not in the iSCRIPT working directory at the 

time of the call (see Section 7.3). The filename must be enclosed in single 

quotes. 

 commandline_argument is an optional string containing arguments that 

should be passed to the executable at runtime. 

 The execute command may be used to run any executable at runtime, including 

Microsoft Excel, other CFD programs, and MATLAB (using MATLAB’s 

component compile (MCC) tool). 
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 Combining the ability to run an external executable with the input/output 

procedures in Section 4.8 allows iSCRIPT to write input files for an external 

program, run the program, and read the output. This allows engineering models 

implemented in other environments to easily be integrated with an iSCRIPT 

solution. See sample problem 17 for an example solution integrating an aircraft 

engine model program written in MATLAB. 

 

8.3. Setting/Changing the Working Directory 

iSCRIPT provides commands for changing the execution directory in case a third-

party executable does not reside in the same folder as an iSCRIPT program that 

wishes to run the executable. The syntax to accomplish this is: 

call changedirectory ([‘path’]) 
 

or 
 

ivar =  changedirectory ([‘path’]) 
 

The above rules govern the process of calling the changedirectory command. 

 

 path is a string representing the directory to change to. When not provided, the 

command reverts to the executing iSCRIPT directory (See sample problem 18). 

Path must be enclosed in single quotes. 

 The output of the changedirectory command is 1 if successful and 0 if an error 

occurred.  

 

8.4. Determining the Working Directory 

 
To determine the current directory (at iSCRIPT runtime), iSCRIPT has provided the 

keyword currentdirectory. When used with the write statements (Section 4.8), the 

current working directory is printed. See sample problem 18 which is described in the 

appendix. 

 

8.5. Example of Running a MATLAB script 

 
A short MATLAB script that uses some of the matrix manipulation commands in  

MATLAB is used to the extent to which iSCRIPT can execute MATLAB programs. 

 

Model 

xyxbxyz

b ,y ,x

/2

115

212

014

211

121

112

987

664

324
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8.5.1 Running the MATLAB script 

The MATLAB script is shown below. 

 

x = [4, 2, 3; 4, 6, 6; 7, 8, 9]; 

y = [2, 1, 1; 1, 2, 1; 1, 1, 2]; 

b = [4 1 0; 2 1 2; 5 1 1]; 

z = y*x + b*x + 2*y/x 

%z = 2*y/x; 

a = x + 2 * sin(y) 

 

Note that Lines 4 and 6 have the ending “;” removed so that MATLAB would print 

an output to screen. The file containing this script is matlaba70.m in the subfolder 

/SampleScripts/MATLABprograms of the iSCRIPT installation folder. There are two 

ways to run this script in MATLAB: 

 

1. Method 1 

 Open the MATLAB program. 

 Simply copy and paste the above script (or from the open matlaba70.m file) 

into the MATLAB command window. 

 The output values of the matrix z and are printed out. 

 

2. Method 2 

 Open the MATLAB program 

 Set the Current Directory to the /SampleScripts/MATLABprograms 

subfolder of the iSCRIPT installation folder as shown in Figure 7.1. 

 Type matlaba70 in the MATLAB command window. 

 The output values of the matrix z and are printed out. 
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Figure 7.1. MATLAB program showing results of running matlaba70.m script file. 

 

8.5.2 Running the program in iSCRIPT 

The iSCRIPT version of the same program is presented below. Notice that the script 

is exactly the same, except that the variables used are declared at the start of the 

program. This is the most prominent modification that has to be made to MATLAB 

scripts to run them in iSCRIPT. 

 

i,x(3,3),y(3,3),b(3,3) as integer 

z(3,3),a(3,3) as real 

x = [4, 2, 3; 4, 6, 6; 7, 8, 9]; 

y = [2, 1, 1; 1, 2, 1; 1, 1, 2]; 

b = [4 1 0; 2 1 2; 5 1 1]; 

z = y*x + b*x + 2*y/x; 

%z = 2*y/x; 

a = x + 2 * sin(y); 

 

The file containing this script is matlaba70.isc in the subfolder 

/SampleScripts/MATLABprograms of the iSCRIPT installation folder. Run this file in 

iSCRIPT as follows: 
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1. Open iScript Editor. 

2. Select “File > Open” from the menu. 

 The File Open dialog box appears. 

3. Navigate to the subfolder /SampleScripts/MATLABprograms of the iSCRIPT 

installation folder. 

4. Open the file matlaba70.isc. 

5. Select “Tools > Run Current Script/Project File” from the menu. 

 The program runs and the output values of the matrix z are printed out. 

 

8.5.3 Running other MATLAB sample programs 

Additional examples running scripts created in MATLAB are available in the 

subfolder /SampleScripts/MATLABprograms of the iSCRIPT installation folder and 

are described in sample problems 12 through 15 in Appendix C. 

 

8.6. Running an Executable (or Third-Party Software) 

 
The executable used for this illustration was actually generated from a MATLAB 

script. The procedure to compile the script into an executable is also described. The 

method for interfacing with a third-party software is illustrated in a system modeling 

context in which one (or all) of the subsystems are modeled in a different software. 

 

Figure 7.2 presents a schematic of the procedure. In the figure, a complete aircraft is 

modeled, modeling each subsystem in a decomposed fashion. It is assumed that the 

propulsion subsystem (PS) is modeled in a separate executable file that receives 

parameter input representing variables, such as the operating point Mach number, 

altitude, and amount of bleed air extracted for the environmental control subsystem 

(ECS).The iSCRIPT model integrates the PS program into the complete aircraft 

model by writing the parameter input into a file in the required format of the PS 

model, running the PS program, and retrieving the output from the output file in the 

program’s output format. 
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Figure 7.2. An aircraft model with the PS subsystem modeled in a software or 

executable outside of iSCRIPT. 

 

 

The solution consists of the following files in the /SampleScripts/PS_inMATLAB 

subfolder of the iSCRIPT installation folder: 

 

PS_conv.m  a MATLAB program that rates a low-bypass turbofan aircraft 

engine. The input to the program includes the altitude, Mach 

number, etc. This program reads the input from a file PS_input.txt. 

The output from the program includes several variables, including 

the thrust, fuel consumption etc. The output from the program is 

written to a file PS_output.txt. 

 

ata.ipr an iSCRIPT project file containing three files: main.isc, 

ps_component.isc, and  ps_setting.isc. These files are described 

below. 

 

Main.isc a main program defining two components, PS_setting and 

PS_Component. PS_Setting simply sets the conditions for 

computing (rating) the aircraft engine. 

 

PS_component.isc an iSCRIPT component model file. This model file includes 

commands to execute the MATLAB model. An input file is 

created for the MATLAB program and the output from MATLAB 

is read. The output is further used to compute certain quantities, 

such as the total exergy destruction in the engine. 
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Procedures for Running this Solution 

 

1. Run the MATLAB program in MATLAB to check the model of the aircraft 

engine. 

2. Compile the MATLAB program into an executable. This step includes issuing the 

command mcc –m PS_conv. An executable named PS_conv.exe is generated. 

This executable was renamed to PS.exe 

3. Run iSCRIPT. Enter the project file ata.ipr at the iSCRIPT prompt. 

4. View the results. 

5. Note that the model may be optimized further on the high-level using the 

optimization procedures present in the iSCRIPT program, as described in Chapter 

6. 
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9.  Conclusions 
 

Future development of TTC’s scripting language will continue to extend the current 

capabilities, adding more intrinsic functions, e.g., for non-linear analysis, dynamic 

analysis, solvers etc. The consistent motive would be to create an easy, powerful 

modeling and design/optimization tool compatible with the scripting languages that 

engineers use most often. A GUI procedure to utilize the power of the scripting language 

and optimization procedure in graphic block-building approach will also be separately 

available. Sample screen of this program is shown below. The underlying code modeling 

the components and subsystems depicted graphically would be the iSCRIPT platform. 

 

1. Create components

3. Indicate coupling variables

4. Construct component model

2. Enter component variables

(a) System consisting of 

several components

(b) Process for developing 

component model

1. Create components

3. Indicate coupling variables

4. Construct component model

2. Enter component variables

(a) System consisting of 

several components

(b) Process for developing 

component model

 
Figure 9.1. A graphical system building tool to complement iSCRIPT. 
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Appendix A.   iSCRIPT Language Reference 
 

A.1. Variables and Expressions 

 
In stand-alone scripts, variables are declared as follows: 
 

var1, var2 as type 

 

var1, var2  – variable names satisfying the variable naming convention. 

as – declaration keyword 

type – may take values: logical, short, long, real, and double 

A.1.1. Types of Variables 

Logical variables 

Logical variables take on values of T or F. In addition, values of 0 or any real number 

may be assigned to logical variables. A numeric value of 0 will be converted to F 

prior to assignment, while other numbers will be converted to T. 

 

Short variables 

Short variables have values in the range -32,768 to 32,767. They are also type 

INTEGER(2) in FORTRAN. The syntax for the declaration also allows the use of 

INTEGER(2) or INTEGER*2 keywords. 

 

Long variables 

Long variables have values in the range -2,147,483,648 to 2,147,483,647. They are 

also type INTEGER in FORTRAN. The syntax for the declaration also allows the use 

of INTEGER, INTEGER(4) or INTEGER*4 keywords. 

 

Real variables 

Holds signed IEEE 32-bit (4-byte) single-precision floating-point numbers ranging in 

value from -3.4028235E+38 through -1.401298E-45 for negative values and from 

1.401298E-45 through 3.4028235E+38 for positive values. The syntax for the 

declaration also allows the use of SINGLE, REAL(4), or REAL*4 keywords. 

 

Double variables 

Holds signed IEEE 64-bit (8-byte) double-precision floating-point numbers ranging 

in value from -1.79769313486231570E+308 through -4.94065645841246544E-324 

for negative values and from 4.94065645841246544E-324 through 

1.79769313486231570E+308 for positive values. The syntax for the declaration also 

allows the use of REAL(8) or REAL*8 keywords. 
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A.1.2. Variable Names 

Variable names may be up to 24 characters long and can be alphanumeric. However, 

variables must not begin with a “_” or a numeral, and must not be separated by 

spaces. Examples of valid variable names include: 

 

 ii Reynolds_No Ma 
 jNo iwhat  Total_Value 

A.1.3. Numbers 

Conventional decimal notation is used, with an optional decimal point and leading 

plus or minus sign, for numbers. Scientific notation uses the letter e to specify a 

power-of-ten scale factor. Some examples of legal numbers are 

 7                -82            0.00007 
 7.4382259      1.60210e-20     9.1345e14 

All numbers are stored internally using the double type described in Section 2.1 and 

as specified by the IEEE floating-point standard. 

A.1.4. Assignment Operator 

The “=” symbol is used as the assignment operator. 

 

var1 = 1.002 

 

A.1.5. Arithmetic Operators 

Arithmetic operators include: 
 

Operator Function 

- Subtraction. 
Subtracts a variable, number, or expression on the 

right from a variable, number, or expression on the left 
of the operator. 

+ Addition. 

Adds a variable, number, or expression on the right to a 
variable, number, or expression on the left of the 

operator. 
* Multiplication. 

Multiplies a variable, number, or expression on the right 

to a variable, number, or expression on the left of the 
operator. 

/ Division. 
Divides a variable, number, or expression on the left by 
a variable, number, or expression on the left of the 

operator. 
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^, ** Power. 
Raises a variable, number, or expression to the left to a 

power defined by a variable, number, or expression on 
the right. 

( ) Brackets. 
Independently evaluate the value contained within the 
brackets. 

The precedence of the operators is as shown from top to bottom, i.e. ‘**’ are 

computed before ‘-’ when they are in the same expression. 

A.1.6. Relational Operators 

Relational operators include: 
 

Operator Function 
< Less than. 

Compares a variable, number, or expression on the 

right to an variable, number or expression on the left of 
the operator. Returns a value of 1 or true if the value 

on the left is less than that on the right. 
> Greater than. 

Compares a variable, number, or expression on the 

right to an variable, number or expression on the left of 
the operator. Returns a value of 1 or true if the value 

on the left is greater than that on the right. 
<= Less than or equal. 

Compares a variable, number, or expression on the 

right to an variable, number or expression on the left of 
the operator. Returns a value of 1 or true if the value 

on the left is less than or equal that on the right. 
>= Greater than or equal. 

Compares a variable, number, or expression on the 

right to an variable, number or expression on the left of 
the operator. Returns a value of 1 or true if the value 

on the left is greater than or equal that on the right. 
= = Equal. 

Compares a variable, number, or expression on the 

right to an variable, number or expression on the left of 
the operator. Returns a value of 1 or true if the value 

on the left is equal that on the right. 
!= Not equal. 

Compares a variable, number, or expression on the 

right to an variable, number or expression on the left of 
the operator. Returns a value of 1 or true if the value 

on the left is not equal that on the right. 
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A.1.7. Logical Operators 

Logical operators include: 
 

Operator Function 
& LOGICAL AND. 

Returns a value of 1 or true if the variable, number, or 
expression on the right is true (or non zero) and the 

variable, number, or expression on the right is also 
true. 

| LOGICAL OR. 

Returns a value of 1 or true if either the variable, 
number, or expression on the right is true (or non zero) 

or the variable, number, or expression on the right is 
true. 

~ NOT. 
Returns a value of 1 or true if the variable, number, or 
expression on the right is not true (or is zero). 

A.1.8. Expressions and Equations 

Expressions may be generated as a combination of variables, numbers, and operators. 

Examples include: 
 

Re = rho * U * L / mu 
 
Speed_of_sound = (gamma * P/rho) ^ 0.5 

 
iparameters_provided = Reynolds & Ma 

 

iSCRIPT is case-insensitive and free-form. This also means that empty lines, spaces, 

and comments can be included as desired without consequence to the performance of 

the scripts. This also means that programs can be indented and commented 

appropriately for easy code maintenance. 

A.1.9. Comments 

Comments may be included in a script using the # or % symbols. Comments may 

occupy a whole line or be included after an expression. In either case, all input 

following a comment symbol is ignored. Examples include: 
 

 

# The parameters of the flow are computed below 
Re = rho * U * L / mu  # Reynolds no. Eqn(1.3) 
 
Speed_of_sound = (gamma * P/rho) ^ 0.5 # Sound speed. Eqn(1.4) 
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A.2. Arrays 

 
Scripts may include arrays of any size or dimensions. Arrays may be declared similar 

to other variables but must include the size and dimension of the arrays in brackets 

after the array names.  Array sizes must be integer values. Examples include: 
 

matrixA(3,3) as real 
 
array1(5,2), inumber as integer 

A.2.1. Referencing Array Elements 

Array elements may be referenced using numbers, variables, or expressions. The type 

of the number, variable, or expression will be converted to integer at runtime. 

Examples include: 
 

 matrixA(1,1) = 12.2 
  
 matrixA(1,2) = Reynolds_No 

 
 matrixA(1,3) = rho * U * L / mu 
 
 matrixA(j + sin(t + r^2), k) = cos(omega * t) 
 

Arrays can be included directly in expressions and array arithmetic performed. 

A.2.2. Assigning Values to Arrays 

Literal values can be directly assigned to array variables. For instance, the segment 

below generates a 3 x 3 matrix x. 

x(3,3) as integer 
 
x = [4, 2, 3; 4, 6, 6; 7, 8, 9]; 

A.2.3. Matrix Arithmetic 

Matrix arithmetic, such as multiplication, divisions, additions, etc., may be performed 

directly. An example is shown below. 

i,x(3,3),y(3,3),b(3,3) as integer 
 
z(3,3),a(3,3) as real 
 
x = [4, 2, 3; 4, 6, 6; 7, 8, 9]; 
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y = [2, 1, 1; 1, 2, 1; 1, 1, 2]; 
 
b = [4 1 0; 2 1 2; 5 1 1]; 
 
z = y*x + b*x + 2*y/x; 
 
a = x + 2 * sin(y); 

 

A.3. Decision Structure 

 
iSCRIPT uses the if-elseif-else-endif statement to implement the conditional 

execution of segments of a program. The syntax is as shown below: 
 

if (expression1) then 
 … 
 
elseif (expression2) then 
 … 
 
elseif (expression3) then 
 … 
 
else 
 … 
 
end if 

 

The following rules govern the use of the if statement. 

 

 expression1, expression2, and expression3 are valid expressions 

constructed as in Section 4.1. 

 … represents one or more lines of scripting language segments (which may 

include other if statements). 

 else if may also be used instead of elseif. 
 endif or end may also be used instead of end if. 
 It is not mandatory to have the elseif or else portions of the if statement. 

 There is no limit to the number of elseif segments that may be included in an 

if structure. 

 There can be only one else statement in an if structure. 

 if statements may be nested as desired. 

 

A.4. Loop Structure 

 
iSCRIPT uses the do, for, and while statements to implement the conditional 

execution of segments of a program. The syntax for each type is described below. 
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A.4.1. Do Loops 

do ii = expression1 : expression2 
 … 
 
end do 

 

The following rules govern the use of the do statement. 

 

 ii is a variable declared as in Section 4.1 (ii may be a short, long, real, or 

double variable). 

 expression1 and expression2 are valid expressions constructed as in 

Section 4.1. 

 … represents one or more lines of scripting language segments (which may 

include other do statements) and is referred to as the body of the loop. 

 ii is incremented by 1 and the body of the loop executed until expression1 is 

greater than expression2. 

 The body is not executed at all if expression1 is greater than expression2 at 

the start of the loop. 

 enddo or end may also be used instead of end do. 

 do statements may be nested as desired. 

A.4.2. For Loops 

for ii = expression1 : expression2 
 … 
 
end for 

 

The following rules govern the use of the for statement. 

 

 ii is a variable declared as in Section 4.1 (ii may be a short, long, real, or 

double variable). 

 expression1 and expression2 are valid expressions constructed as in 

Section 4.2. 

 … represents one or more lines of scripting language segments (which may 

include other for statements) and is referred to as the body of the loop. 

 ii is incremented by 1 and the body of the loop executed until expression1 is 

greater than expression2. 

 The body is not executed at all if expression1 is greater than expression2 at 

the start of the loop. 

 endfor or end may also be used instead of end for. 
 for statements may be nested as desired. 
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A.4.3. While Loops 

 

while (expression1) 
 … 
 
end 

 

The following rules govern the use of the while statement. 

 

 expression1 is a valid expressions constructed as in Section 4.2. 

 … represents one or more lines of scripting language segments (which may 

include other for statements) and is referred to as the body of the loop. 

 The body of the loop is executed until expression1 evaluates to false or 0. 

 The body is not executed at all if expression1 is false or evaluates to 0 at the 

start of the loop. 

 while statements may be nested as desired. 

 

A.5. Subprogram and Function 

 
iSCRIPT allows the use of subprograms to introduce program structure and allow 

the organization of parts of the model. For instance a subroutine or function may 

be generated separately and called multiple times to perform a specific purpose. 

Subprograms are useful in creating codes or models that are easily maintained, 

and help to avoid rewriting whole segments of code that may be required more than 

one time. 

 

Scripts may be created without any particular start or end program indicator. In this 

case, the entire script is assumed to be one program and subprograms can not be 

used. To use subroutines and subfunctions, a start and end program indicator 

must separate the program and start and end subprogram indicators must also be 

used. All scripting elements outside of these demarcators are ignored. The exact 

syntax for structure limiters are described in this chapter. 

 
A.5.1. Program Structure 

 

program programname 
 variable declaration statements 
 … 
 
 
end program 

 

The following rules govern the use of program structure statements.  

 



 82 

 programname is the name of the program and must be contrived according 

to variable naming conventions described in Section A.1.2. 

 variable declaration statements represents several lines of variable 

declaration statements as described in Section A.1.1. 

 … represents one or more lines of scripting language segments and is referred 

to as the body of the program. 

 endprogram may also be used instead of end program. 

 There can be only one program in a model of a component. 
 

A.5.2. Subroutine Structure 

 

subroutine subroutinename (arg1, arg2, …, argN) 
 variable declaration statements 
 … 
 

 
end subroutine 

 

The following rules govern the use of the subroutine structure statements. 

 

 subroutinename is the name of the subroutine and must be named 

according to variable naming conventions described in Section A.1.2. 

 variable declaration statements represents several lines of variable 

declaration statements as described in Section A.1.1. 

 arg1, arg2, …, argN are variables or arrays named according to conventions 

described in Section A.1.2 and are called the dummy arguments to the 

subprogram. 

 The dummy arguments to the subprogram must be declared in addition to any 

other variable declared within variable declaration statements. 

 … represents one or more lines of scripting language segments and is referred 

to as the body of the subprogram. 

 endsubroutine may also be used instead of end subroutine. 

 

A.5.3. Calling a Subroutine 

A subroutine may be called within a program, other subroutine, or function. A 

subroutine may also be called recursively. Subroutines may be called using the call 
keyword. 

call subroutinename (arg1, arg2, …, argN) 
 

The following rules govern the process of calling a subroutine. 

 

 subroutinename is the name of the subroutine and must be the same as that 

used in the subroutine keyword in A.5.2. 
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 arg1, arg2, …, argN are variables or arrays named according to conventions 

described in Section A.1 and are called the actual arguments to the 

subprogram. 

 The names of the actual arguments may be different from those of the dummy 

arguments in Section A.5.2. However, the type and array sizes must match if 

the actual and dummy arguments are arrays. 

 The program or subprogram within which the above statement is placed is 

referred to as the calling program or subprogram. 

 The actual arguments to the subprogram must be declared in addition to any 

other variable declared within the calling program or subprogram. 

 At runtime the values of the actual arguments, if modified within the 

subroutine, is returned to the calling program or subprogram. 

 

A.5.4. Function Structure 

 

function functionname (arg1, arg2, …, argN) 
 variable declaration statements 
 … 
 

 
end function 

 

The following rules govern the use of the function structure statement. 

 

 functionname is the name of the function and must be named according to 

variable naming conventions described in Section A.1. 

 variable declaration statements represents several lines of variable 

declaration statements as described in Section A.1. 

 arg1, arg2, …, argN are variables or arrays named according to conventions 

described in Section 4.1 and are called the dummy arguments to the 

subprogram. 

 The dummy arguments to the subprogram must be declared in addition to any 

other variable declared within variable declaration statements. 

 functionname must be declared in addition to any other variable declared 

within variable declaration statements. functionname may be declared 

as an array. 

 … represents one or more lines of scripting language segments and is referred 

to as the body of the subprogram. 

 endfunction may also be used instead of end function. 

 

A.5.5. Calling a Function 

A function may be called within a program, other subroutine, or function. A 

function may also be called recursively. Functions may be called simply using 

them in an expression in lieu of a variable or array. 

var = functionname (arg1, arg2, …, argN) 
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Examples 
 

Function Calls Actual Function 
… 

Re = Reynolds_No (rho, U, L, mu) 

… 

Re_is = Reynolds_No (rho, U, L, 

mu)^gm 

… 

 

Function Reynolds_No (r, V, L, 

mu) 

r, V, L, mu as real 

Reynolds_No = r * V * L / mu 

End Function 

 

 

The following rules govern the process of calling a function. 

 

 var is the name of a variable or array named according to conventions 

described in Section A.1. 

 functionname is the name of the subroutine and must be the same as that 

used in the function keyword in Section A.5.2. 

 arg1, arg2, …, argN are variables or arrays named according to conventions 

described in section A.1 and are called the actual arguments to the function. 

 The names of the actual arguments may be different from those of the dummy 

arguments in Section A.5.2. However, the type and array sizes must match if 

the actual and dummy arguments are arrays. 

 The program or subprogram within which the above statement is placed is 

referred to as the calling program or subprogram. 

 The actual arguments to the function must be declared in addition to any other 

variable declared within the calling program or subprogram. 

 At runtime the values of the actual arguments, if modified within the function, 

is returned to the calling program or subprogram. 

 At runtime, the value of the functionname as a variable is returned to the 

calling program or subprogram and used to evaluate the expression to the right 

of the assignment symbol. 

 

A.5.6. Return 

When used in a function or subroutine, the return statement acts in exactly the same 

way as the end function or end subroutine statements. A sample of syntax is 

illustrated below: 

subroutine subroutinename (arg1, arg2, …, argN) 
 variable declaration statements 
 … 
 
 return 
 … 
 
end subroutine 
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In the above syntax, on encountering the return syntax, the subroutine is ended and 

rest of the subroutine is not executed. Used within decision statements, the return 

keyword may be used to conditionally end the execution of a subprogram when 

certain outcome has been attained. 

 

A.5.7. Argument Passing Convention 

Arguments are passed by reference in iSCRIPT similar to FORTRAN. However, if 

MATLAB syntax is selected, arguments are passed by value. Expressions and 

literal values are passed by value. Global and component variables are also passed 

by value (since they are global variables and do not need to be passed into 

subprograms if their values are intended to change in any subprogram). 

A.6. Other Program Flow Structure 

 
For compatibility with other engineering programming tools, iSCRIPT supports 

additional syntax including the break and continue keywords as well as labels and 

go to statements. 

 
A.6.1. Break 

 

This keyword is used only for scripts indicated as MATLAB source. The break 

statement terminates the execution of a loop segment. In nested loops, the break 

statement only exits the loop within which it occurs. 

 

Examples: 

 

for ii = expression1 : expression2 
 … 
 break 
 … 
end for 

 
 
 

for ii = expression1 : expression2 
 … 
 if (expression3) then 
  … 
 
  break 
  … 
 end if 
 … 
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end for 
 

Both examples above cause the premature termination of the for loop on 

encountering the break statement. In the second case, the termination only occurs 

on the condition of expression3.  

 

A.6.2. Continue 

 

This keyword is used only as a place holder. For instance, the continue keyword 

may be used to establish a label. The presence of the continue keyword has no 

effect whatsoever in a scripting segment.  Examples are included in A.6.3. 

 

A.6.3. Go to and labels 

 
The goto statement is used to influence program flow. This statement is used in 

conjunction with a label statement. The syntax is shown below. 

 

… 
goto :label 
… 
:label 

 

The rules governing goto and label statements are as follows: 

 

 label is an alphanumeric word defined according to the rules for naming 

variables as described in Section A.1. label words must not be declared. 

 “goto” or “go to” may be used. 

 … represents one or more lines of scripting language segments within the 

same program or subprogram. 
 

Example 1 (using the continue keyword): 

 

Re = rho * U * L / mu 

 

If (Re <= 2500) then 

 f = 16/Re 

go to :2000 

end if 

 

f = 0.0064 *Re ^ 0.4 

 

:2000 continue 

 

Example 2 (using a label with an expression): 

 

Re = rho * U * L / mu 
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If (Re <= 2500) then 

go to :2000 

end if 

 

f = 0.0064 *Re ^ 0.4 

 

:2000  f = 16/Re 

 

A.7. Intrinsic Functions 

Below is a list of supported intrinsic functions. Their arguments and characteristics 

are the same as their FORTRAN equivalents. This list is constantly increasing. 

Please check our website for an updated list at any time. 

    1. cos 
    2. sin 
    3. tan 
    4. exp 
    5. log 
    6. log10 
    7. sqrt 
    8. acos 
    9. asin 
    10. atan 
    11. cosh 
    12. sinh 
    13. tanh 
    14. anint 
    15. aint 
    16. abs 
    17. real 
    18. dble 
    19. alog10 
    20. alog 
    21 sizeof 
    22 length 
    23 sum 
    24 avg 
    25 min 
    26 max 

 

A.8. Input/Output 

iSCRIPT includes commands for input/output to screen, keyboard, and files. The 

commands are described in this section. 
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A.8.1. Opening a File 

A file may be opened using the open command. The syntax is as shown below. 

call open (unit, ‘filename’, [‘permission_mode’], arg1, arg2, …, argN) 
 

or 
 

unit =  open (‘filename’, [‘permission_mode’], arg1, arg2, …, argN) 
 

The following rules govern the process of calling the open command. 

 

 unit is an integer between 10 and 100 provided as a handle for opening the file. 

This handle should be used when reading from or writing to the file. When the 

unit is an output, iSCRIPT opens the file on an available unit and supplies the 

unit as the function output. 

 filename is a string representing the name of the file to be opened and must be 

in accordance with the file naming rules on the operating system. Filename must 

be enclosed in single quotes. 

 fopen may be used instead of the open keyword. 

 Permission_mode is one of the options specified in the table below: 

 

Permission Mode Specifiers 

Permission_mode Description 

Text Mode 

'rt' Open file for reading (default). 

'wt' Open file, or create new file, for writing; discard existing contents, if any. 

'at' Open file, or create new file, for writing; append data to the end of the file. 

'rt+' Open file for reading and writing. 

'wt+' Open file, or create new file, for reading and writing; discard existing contents, if any. 

'at+' Open file, or create new file, for reading and writing; append data to the end of the file.  

Binary Mode 

'r' Open file for reading (default). 

'w' Open file, or create new file, for writing; discard existing contents, if any. 

'a' Open file, or create new file, for writing; append data to the end of the file. 

'r+' Open file for reading and writing. 

'w+' Open file, or create new file, for reading and writing; discard existing contents, if any. 

'a+' Open file, or create new file, for reading and writing; append data to the end of the file.  
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A.8.2. Closing a File 

An open file may be closed using the close command. The syntax is shown below. 

call close (unit) 
 

or 
 

ivar =  close (unit) 
 

The following rules govern the process of calling the close command. 

 

 unit is an integer between 10 and 100 representing the handle for the open file.  

 The output of the close command is 0 if successful and -1 if an error occurred. 

The exact error based on the operating system is written in the iSCRIPT log file. 

 fclose may be used instead of the open keyword. 

 

A.8.3. Reading from a File or the Keyboard 

The syntax to read from an open file or the standard input (usually the keyboard) is 

shown below. 

call read ([unit], [‘format’], [arg1], [arg2], …, [argN]) 

 

call read ([unit], [‘format’]) [arg1], [arg2], …, [argN] 

 

or 

 

A =  read ([unit], [‘format’], [isize]) 

 

A =  fscanf ([unit], [‘format’], [isize]) 
 

The following rules govern the process of calling the read command. 

 

 unit is an integer between 10 and 100 representing the handle for the open file. 

No unit specified, units 1, 2, 5, or 6 refers to the keyboard. 

 format is a string representing the read format. The format string may be 

omitted (simply provide an empty “,”) or an * used instead. The format string 

when read is currently ignored but is accepted for compatibility with future 

versions of iSCRIPT. The MATLAB format specifiers are accepted. 

 fscanf may be used instead of the read keyword except when no argument is 

provided (empty read). 

 arg1, arg2, …, argN are strings, variables or arrays. Strings must be enclosed 

in single quotes. 

 A is a variable or array. 
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 When specified, isize refers to the total number of elements that should be read. 

When isize exceeds the size of the array, the size of the array is used. 

 If an end of file occurs during a read, the command returns and the program 

resumes. An internal flag is set which may be queried using the eof command ( 

(see Section A.8.6). 

 

A.8.4. Writing to a File or the Screen  

The syntax to write to an open file or the standard output (usually the screen) is 

shown below. 

call write ([unit], [‘format’], [arg1], [arg2], …, [argN]) 
 

call write ([unit], [‘format’]) [arg1], [arg2], …, [argN] 
 
or 

 
isize =  write ([unit], [‘format’], [arg1], [arg2], …, [argN]) 
 
isize =  fprintf ([unit], [‘format’]) [arg1], [arg2], …, [argN] 
 

The above rules govern the process of calling the write command. 

 

 unit is an integer between 10 and 100 representing the handle for the open file. 

No unit specified, units 1, 2, 5, or 6 refers to the keyboard. 

 format is a string representing the read format. The format string may be 

omitted (simply provide an empty “,”) or an * used instead. The format string 

when read is currently ignored but is accepted for compatibility with future 

versions of iSCRIPT. The MATLAB format specifiers are accepted. 

 fprintf may be used instead of the write keyword. 

 arg1, arg2, …, argN are strings, variables or arrays. Strings must be enclosed 

in single quotes. 

 isize is a value returned representing the number of bytes or characters written. 

 

A.8.5. Rewinding a File 

An open file may be returned to the start of file using the close command. The 

syntax is shown below. 

call rewind (unit) 
 

or 
 

ivar =  rewind (unit) 
 

The following rules govern the process of calling the close command. 
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 unit is an integer between 10 and 100 representing the handle for the open file.  

 The output of the rewind command is 0 if successful and -1 if an error occurred. 

The exact error based on the operating system is written in the iSCRIPT log file. 

 frewind may be used instead of the open keyword. 

 

A.8.6. End-of-File Function 

An end of file (eof) command may be called to determine if end of file occurred 

during the last call to the read command on a specified file open handle. The syntax 

is as follows: 

ivar =  eof (unit) 
 

The following rules govern the process of calling the close command. 

 

 unit is an integer between 10 and 100 representing the handle for the open file.  

 The output of the eof command is 1 if end-of-file occurred or 0 otherwise.  

 feof may be used instead of the eof keyword. 

 

A.9. Object-Oriented Features and Component Modeling 

iSCRIPT has object-oriented features that allows you to define component objects 

(or structures) and variables attached to those structures. In iSCRIPT, the structures 

can be created as components and the properties of the component are referred to as 

component variables. However, unlike normal structures, all components 

automatically support the Component.Execute method. The syntax to define an 

object and the properties or variables of the objects is described below. 

Note that a global component exists for every project as described in Section A.9.3. 

The global component has no execute file. 

A.9.1. Defining a Component 

An object may be defined using the following syntax: 

CreateComponent (name [,description]) 

Note: Segments enclosed in square brackets are optional and may be omitted. 

name –  A name for the component (a string limited to 24 characters). Two 

components may not have the same name. Component names obey 

the same formation rules as those for variables. 

description –  A description for the component (a string limited to 50 characters). 

Optional. 
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NOTE: THERE IS NO NEED TO ENCLOSE CHARACTER ARGUMENTS IN 

QUOTES FOR THIS COMMAND. 

Example: 

program main 

T_in, T_out as real 

CreateComponent (Heat_Ex1) 

CreateVariable (Heat_Ex1, Tin) 

CreateVariable (Heat_Ex1,Tout) 

T_in = 286.16 

Heat_Ex1.Tin = T_in 

… 

… 
 

A.9.2. Defining a Component Variable 

A component variable may be defined using the following syntax: 

CreateVariable (component, name [,type] [,dimension] [,size] 
[,upper_bound] [,lower_bound] [,default_value] [,unit]) 

Note: Segments enclosed in square brackets are optional and may be omitted. 

component – The component to which the variable belongs (a string limited to 

24 characters). Two component variables may not have the same 

name. Component variable names obey the same formation rules 

as those for variables. 

name –  A name for the component (a string limited to 24 characters). 

Two components may not have the same name. Component 

names obey the same formation rule as those for variables. 

type –  A string accepting values such as “integer,” “real,” “double.” A 

complete list of variable types can be found in Section A.1. This 

argument is optional. When not provided, component variables 

are assumed to be double values. 

dimension –  Variable dimension for an array variable (integer). For example, 

a 2D matrix will have a dimension of 2. This argument is 

optional for scalar variables (dimension = 0 is default). 
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size –  Variable size for an array variable. This argument accepts an 

integer array with a limit of five integers. For example, a 3 x 3 

matrix will have a size of (3,3). This input must be enclosed in 

brackets. This input is required when dimension > 0. 

upper_bound –  An upper bound for the variable (all the variables for an array 

variable). The type of this argument depends on type. This 

argument is optional. 

lower_bound –  A lower bound for the variable (all the variables for an array 

variable). The type of this argument depends on type. This 

argument is optional. 

default_value –  A default value for the variable (all the variables for an array 

variable). The type of this argument depends on type. This 

argument is optional. 

unit –  A string representing the engineering unit used in providing the 

variable values (e.g., m/s). This argument is also optional and 

when provided is limited to 20 characters. 

NOTE: THERE IS NO NEED TO ENCLOSE CHARACTER ARGUMENTS IN 

QUOTES FOR THIS COMMAND. 

 

A.9.3. Executing a Component 

 

A component may be executed using the following syntax: 

Component_name.execute 

Or 

Call Component_name.execute 

Component_name –      Character(24). The component name as defined in 4.9.1.  

The execute routine must be a subroutine with the same name as 

Component_name and require no arguments. 
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A.9.4. Using Global Variables in the In-Built Global Component 

 

Global variables may be created only in the main program. Global variables do not 

need to be created using the CreateVariable command (although this command 

may be used as well). Instead, global variables may be created simply by prefixing 

a declaration with the Global keyword, as in Section 2.1. 

Global Re, Ma as real 

Global variable names must be unique among variable names but may coincide 

with a local variable name. Reference to global variables is similar to that for all 

components, as illustrated in the example below: 

   program 
 

   global emCp, Q1 as real 
   localemCp, Q, r as real 
 
 
    global.emCp = 209.4 
 
    r = 4.0 
 
    localemCp = global.emCp 

  
 
    end program 
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Appendix B.  iSCRIPT Optimization Reference 

 
B.1. Design/Optimization Analysis Procedures 

iSCRIPT provides functions and procedures to optimize components and systems. 

The functions utilize a combination of genetic and gradient-based algorithms. The 

integrated local global optimization (ILGO) procedure is a powerful option used to 

optimize a system consisting of several sub-systems. This procedure allows the 

optimization of large systems within a feasible time-frame, as compared to 

procedures that utilize nested optimization loops through several component 

optimization levels. The procedure is illustrated below: 
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Figure 5.1. Optimization procedure. 

DETAILED OPTIMIZATION 

When an optimization command is invoked on any component, the system will 

launch a detailed optimization based on a combination of genetic and gradient-

based algorithms. The relationship between sub-systems, systems, and components 

is utilized for optimization. The optimization free variables are determined from the 

variables of the component being optimized as well as other components flagged as 

its subcomponent. Essentially, subsystems are simply components that consist of 

several other components by virtue of the model equations (its model equations 

consist of the declaration of other components). If this component is a sub-system 

that can be defined integrally and separately from other sub-systems, the 

optimization procedure will proceed faster by indicating that the component is a 

subsystem and interacts with other subsystems via a finite and few number of 

variables. Then, the subsystem is optimized in detail. This procedure will proceed 

faster than calling an optimization command on each component and then calling an 

overall optimization command on the subsystem. 

ILGO OPTIMIZATION (GLOBAL OPTIMIZATION) 

When a project has been defined into several subsystems, each consisting of several 

components, as illustrated in Figure 5.1, an optimization command may be called at 

the project level. In this case, iSCRIPT will perform a detailed optimization of each 
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subsystem and an overall optimization of the entire system (project) utilizing the 

sub-system level coupling between the sub-systems.          

  

B.2. Procedures for Performing a Detailed Optimization in iSCRIPT 

To optimize a component, the following information must be provided: 

 The objective variable (from the list of component variables). Note that the 

equation to solve an objective function is contained within the component 

model in iSCRIPT and the result of evaluating the objective function is the 

objective variable, f, say, as: 

H(x) = 0 

based on component variables: x = [x1, x2, …, xn] of n variables 

f = f(x) 

Optimize w.r.t. f. 

Then the component variables are: x = [x1, x2, …, xn, f] or n+1 variables, and 

the component model additionally includes the equation: 

f - f(x) = 0. 

Note that iSCRIPT optimization functions are multi-objective and f can be a 

vector of objectives fi. 

 The list of variables in x that are free for optimization. Note that the fewer 

variables have a degree of freedom with respect to optimization, the faster 

the optimization will complete. 

 The list of components encompassed within the component (which is 

technically a subsystem) to be optimized (to perform a subsystem level 

detailed optimization). 

 The optimization command is invoked for the component. 

Note that the model equation for the component may consist of execution and 

optimization commands for other components resulting in nested optimization 

loops. Care must be taken when setting up nested optimization loops, as the time 

required increases geometrically with the number of nesting. 

The procedure for providing the above information is described in subsequent 

sections. 

B.2.1. Indicating an Objective Variable 

An objective variable may be defined using the following syntax: 
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AddObjective (component, variable [,maxmin]) 

Note: Segments enclosed in square brackets are optional and may be omitted. 

component --  The component to be optimized (a string limited to 24 

characters). This component must be a component previously 

declared with the CreateComponent command. 

variable --  Name of the variable (a string limited to 24 characters). This 

variable must be a variable previously declared for this 

component using the CreateVariable command 

maxmin --  0 or 1. Indicates whether this is a minimization or 

maximization objective. Use 0 to minimize this variable and 

1 to obtain a maximum. This argument is optional. The 

default value is 0. 

NOTE: THERE IS NO NEED TO ENCLOSE CHARACTER ARGUMENTS IN 

QUOTES FOR THIS COMMAND. 

Example: 

CreateComponent (Heat_Ex1) 

CreateVariable (Heat_Ex1, Tin) 

CreateVariable (Heat_Ex1,Tout) 

CreateVariable (Heat_Ex1, Length) 

CreateVariable (Heat_Ex1,Width) 

CreateVariable (Heat_Ex1,Weight) 

AddObjective(Heat_Ex1,Weight,0) 

… 

… 

 
B.2.2. Indicating an Free Variable for Optimization 

A variable to be varied in the search for an optimum is indicated as follows: 

AddVarObjective (component, variable [,delta]) 

Note: Segments enclosed in square brackets are optional and may be omitted. 

component --  The component to which the variable belongs (a string 

limited to 24 characters). This component must be the 

component to be optimized or a sub-component of it. This 
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component must be a component previously declared with 

the CreateComponent command. 

variable --  Name of the variable (a string limited to 24 characters). This 

variable must be a variable previously declared for this 

component using the CreateVariable command. 

delta --  This variable further narrows the optimization search space 

for this domain to  ),(),,(  ii xMMINxLMAX  from 

[L, M], where L and M are the lower and upper bounds for 

variable, xi, as defined in CreateComponentVariable, xi is 

the current values of the variable, and  is delta. It is useful 

to further reduce the search space after a prior optimization 

step or after an initial computation based on initial 

conditions. This variable is also used internally to narrow the 

optimization search space in the ILGO procedure (discussed 

later) following the first ILGO step. The type of the argument 

depends on the type of the variable. 

NOTE: THERE IS NO NEED TO ENCLOSE CHARACTER ARGUMENTS IN 

QUOTES FOR THIS COMMAND. 

Example: 

CreateComponent (Heat_Ex1) 

CreateVariable (Heat_Ex1, Tin) 

CreateVariable (Heat_Ex1,Tout) 

CreateVariable (Heat_Ex1, Length) 

CreateVariable (Heat_Ex1,Width) 

CreateVariable (Heat_Ex1,Weight) 

AddObjective(Heat_Ex1,Weight,0) 

AddVarObjective(Heat_Ex1,Length) 

AddVarObjective(Heat_Ex1,Width) 

… 

… 

 
B.2.3. Indicating Component Relationships 

A component may be flagged as contained within another component as follows: 

AddSubComponent (component, sub-component) 
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component --  A component (subsequently a sub-system) to which another 

component is contained within (a string limited to 24 

characters). This component must be the component to be 

optimized or a sub-component of it. This component must be 

a component previously declared with the 

CreateComponent command. 

sub-component --  The component to which belongs to the sub-system (a string 

limited to 24 characters). This component must be the 

component to be optimized or a sub-component of it. This 

component must be a component previously declared with 

the CreateComponent command. 

NOTE: THERE IS NO NEED TO ENCLOSE CHARACTER ARGUMENTS IN 

QUOTES FOR THIS COMMAND. 

Example: 

CreateComponent (Heat_Ex1) 

CreateVariable (Heat_Ex1, Tin) 

CreateVariable (Heat_Ex1,Tout) 

 

CreateComponent (Heat_Ex2) 

CreateVariable (Heat_Ex2, Tin) 

CreateVariable (Heat_Ex2,Tout) 

 

CreateComponent (ECS) 

CreateVariable (ECS, Weight) 

CreateVariable (ECS, Drag) 

 

AddSubComponent (ECS, Heat_Ex1) 

AddSubComponent (ECS, Heat_Ex2) 

… 

… 

The indication of a component as belonging to another is only used when an 

optimization command is called. When the optimization command is called for a 

component, iSCRIPT will search for optimization variables from the component 

and all components belonging to it to perform an overall detailed optimization of 

the component. 

 
B.2.4. Component Optimize Command 
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A component may be optimized using the following syntax: 

   Component.optimize 

Component --  A component name (a string limited to 24 characters) as 

defined in A.10.1. 

 
B.2.5. Procedures for Performing an ILGO Optimization 

 

In addition to the information required for optimizing components, sub-systems 

require the following information: 

 

 An indication of the subsystems in the project or system (each project is 

automatically assumed to represent one system). 

 The list of components that make up the sub-system (as indicated in Section 

11.4). 

 An indication of the coupling variables between sub-systems. 

The procedure for providing the above information is described in subsequent 

sections. 

B.2.6. Indicating a Subsystem 

A subsystem may be indicated using the following command: 

AddSubsystem (component ) 

component --  The component to flag as a subsystem (a string limited to 24 

characters). This component must be the component to be 

optimized or a sub-component of it. This component must be a 

component previously declared with the CreateComponent 
command. 

B.2.7. Indicating Inter-Component (Subsystem) Coupling 
 

A coupling between two components (subs-systems) as follows: 

AddCoupling (component1, variable1, component2, variable2 ) 

component1 --  The component to which the variable belongs (a string limited 

to 24 characters). This component must be the component to be 
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optimized or a sub-component of it. This component must be a 

component previously declared with the CreateComponent 
command. 

variable1 --  Name of the variable (a string limited to at most 24 characters). 

This variable must be a variable previously declared for this 

component using the CreateVariable command. 

component2 --  The component to which the variable belongs (a string limited 

to at most 24 characters). This component must be the 

component to be optimized or a sub-component of it. This 

component must be a component previously declared with the 

CreateComponent command. 

variable2 --  Name of the variable (a string limited to at most 24 characters). 

This variable must be a variable previously declared for this 

component using the CreateVariable command 

The above specification is interpreted as: 

Component1.Variable1 = Component2.Variable2. 

If the coupling is a function, e.g.  

Heat_Ex1.Q = 1.2*SecondaryHeat_Ex.Q +  MCP(T2 – T1) 

An additional component variable may be created – SecondaryHeat_Ex.Q_Couple 

In the system model, this variable may be set as: 

SecondaryHeat_Ex.Q_Couple = 1.2*SecondaryHeat_Ex.Q +  MCP*(T2 – T1) 

This variable may then be coupled to Heat_Ex1.Q. 

 
B.2.8. ILGO Optimize Command 

A system may be optimized using the following syntax: 

System.Optimize 

When the system.optimize command is invoked, iSCRIPT searches for every sub-

system defined in the project and optimizes each one. Then, an ILGO optimization 

is performed, as described in Section 11.6, using the coupling variables.  
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B.2.9. Performing Detailed Optimization at the System Level (without ILGO) 

A system-level global optimization may also be performed the traditional way 

without using the ILGO procedure. This will usually result in nested optimization 

loop. In this case, subsystems do not need to be indicated and inter component 

coupling are simply contained within the models. Optimization is called for each 

component, as well as for the sub-system (which contains components for which 

optimizations are called). Optimization is also called for an overall system 

component, which is created and contains every other component. For the system in 

Figure 6, the calls will be as shown below: 

Component1 model 
equations 

. 

. 

Component1.Optimize 

 

Component2 model 
equations 

. 

. 

Component1.Optimize 

 

Componentn+m+ model 
equations 

. 

. 

Componentn+m+.Optimize 

 

 

Componentx model 
(Subsystem 1) 

equations 
. 
. 

Component1.Execute 
. 

Component2.Execute 
. 
Componentn.Execute 

Componentx.Optimize 

Componenty model 
(Subsystem 2) 

equations 
. 
. 

Componentn+1.Execute 
. 

Componentn+m.Execute 
. 
Componenty.Optimize 

Componentz model 
(Subsystem L) 

equations 
. 
. 

Componentn+m+k+1.Execute 
. 

Componentn+m+k+2.Execute 
. 
Componentz.Optimize 

Component model 

equations 

. 

. 

Componentx.Execute 

. 

Componenty.Execute 

. 
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Componentz.Execute 

Component.Optimize 

 

Note that for any fairly detailed system, the above nested optimization arrangement 

will be very time consuming even if the first level is eliminated and the subsystems 

are optimized integrally using the free variables from their components. 

 
B.2.10. Optimization Genetic Algorithm 

The genetic algorithm used in iSCRIPT is based on a modification of the method of 

Geoff Leyland. The principles used are as follows: 

 Generate an initial population by sampling sparsely over the combinatorial 

search space of all variables combined. 

 Improve the population over a number of generations by combining individuals 

within the population. Combination is created using the following operators: 

o Selection of combining or mating individuals based on a random selection 

process weighted to more likely select individuals at the top. 

o Combining the individuals using a blended function of the free variables. 

o Interrupt the process at a low frequency using a mutation operator to 

ensure that the algorithm does not settle into a non-optimal subspace. 

o Replace only the bottom half of every generation after every combination 

cycle. 

Inherent in the above procedure is a thinning strategy that limits the population size 

to a specific value (for practical purposes). During both the initial population and 

improvement phases, new individuals are inserted into the sorted population such 

that worse individuals drop off once the population size is at a limit. The values of 

the population limit, initial sampling size, number of generations, and the mutation 

frequency are variables that affect the genetic algorithm. Default values have been 

set for these parameters in iSCRIPT but can be modified, as described in the next 

section. 

 
B.2.11. Optimization Parameters 
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There are five parameters in iSCRIPT that control the genetic algorithm used for 

optimization in iSCRIPT. They are implemented internally as global variables with 

default settings (their values may be reset and altered in any model file). They are: 

 

 

maxinitialevaluations – this parameter limits the initial search space size. 

Otherwise, the algorithm attempts to sample each variable at 10 points in its search 

space. For a 10 variable problem, the sample size is potentially approaching a 

fraction of the number 
10

C10. The parameter should be set to a lower number since 

other combination and mutation operators used in subsequent generations reduces 

the need to sample excessively for the initial population. 

maxpopulation – this parameter limits the overall population size. Otherwise, the 

algorithm attempts to set a limit of 20 times the number of variables. The 

population size slows down the genetic algorithm procedure and this parameter can 

be used to control the population size effectively without compromising the ability 

of the process to obtain the true optima. 

maxgenerations – this parameter the number of improvement generations to run. 

This parameter is intended to be used if the user wishes to run the algorithm in 

several cycles effectively restarting a new cycle after maxgenerations. Otherwise, 

this value should be set at a large number and the convergence limit (discussed 

next) used to terminate the improvement runs. 

optconvergencelimit – the improvement runs are terminated after the individuals 

in the top half of the population are no different from the previous generations by 

this value using the L2 norm. 

mutationfreq – this parameter sets the frequency of mutation per variable. The 

parameter can be effectively used to control the procedure. For instance, if a 

specific problem is noted to be very susceptible to local optima (or has a very 

narrow optimum window), a higher value of the mutationfreq (combined with 

more generation runs) will ensure that the true optima are found. (Otherwise, note 

Parameter Default Value 

maxinitialevaluations 1000 

maxpopulation 500 

maxgenerations 8 

optconvergencelimit 0.001 

mutationfreq 0.01 

maxilgosteps 5 
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that using high values of mutationfreq will only make it take longer to settle on the 

optimum value). 

maxilgosteps – Similar to maxgenerations, this parameter determines the 

number of ILGO improvement steps. However, this value is usually small 

considering that it nests within it several optimization runs within it. A graph of the 

objective function over the ILGO steps is a good indicator of whether convergence 

has been reached. 

 

Note that the parameters must be altered according to any global variable in 

iSCRIPT. For example, the maximum population size can be limited as follows: 

 

Global.maxpopulation = 70 
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Appendix C: MORE EXAMPLES OF iSCRIPT SYNTAX 

 

Additional sample problems were developed and used in illustrating specific parts of the 

scripting language syntax. The sample problems, their purpose and results are presented 

below. They are also included in /SampleScripts folder of the iSCRIPT installation. You 

may use these sample problems to gain familiarity with iSCRIPT syntax or copy any 

portion of the files for use in your own script. 

 

Sample Problem 1. 

This problem illustrates the use the declaration of variables, the reading and interpretation 

of expressions and the results. Notice that the program is free flow and without a start or 

end program indicator. iSCRIPT is able to execute free flow scripts without any 

particular program structure or subroutines. 

 

Model 

 
 
 

T

P

TTT

altaltaltaltP

altaltaltT

287

1010454.41025242.71066143.41061988.1

10132511018225.11052991.51018488.11063714.9

815.311082246.61060446.8102901.2

712437

429313419

828312



















where alt is the altitude in m, T the temperature in K, P the pressure in Pa, and  the 

viscosity in Ns/m
2
, and  the density in kg/m

3
. The input value of alt is supplied in ft 

(alt_1) and has to be initially converted to m in the script below. 

 

Input: File equations2.isc 
1     alt    T    P    mu    rho    alt_1

2     alt_1 = 3000

3     alt = alt_1 * 0.3048

4     T   = (2.29013E-12*alt*alt*alt+8.60446E-08*alt*alt-6.82246E-03*alt+3.18150E+02)

5     P   = 101325*(9.63714E-19*alt*alt*alt*alt - 1.18488E-13*alt*alt*alt) 

6     P   = P + 101325*(5.52991E-9*alt*alt- 1.18225E-4*alt + 1)

7     mu  = (1.61988E-7*T*T*T-4.66143E-4*T*T+7.25242E-1*T+4.20454)*1e-7

8     rho = P/287/T  
 

Output 

The output is presented below. Only the print-out of the final value of all variables is 

presented. A hand calculation may be used to confirm the accuracy of the parsed 

results. 

 
FINAL VALUES OF VARIABLES 

 ========================== 
alt                     =   914.4000     

 t                       =   311.9852     

 p                       =   90830.66     
 mu                      =  1.9001649E-05 

 rho                     =   1.014417     
 alt_1                   =   3000.000     
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Sample Problem 2. 

This script is used to illustrate the use of if statements, nested if statements, and if 

statements with multiple brackets and single variable expression as the condition. 

 

Model 



UL
Re  

 5 AND ReRe16

2500ReRe16

2500Re
Re

64

4.0

4.0











Liff

iff

iff

 

 

Input: File equations4.isc 

 
1     rho, v, L, mu, Re, f

2     rho = 1.05

3     v = 17.0e-4

4     L = 5

5     mu = 8.5E-5

6     Re = rho * v * L / mu

7     if (Re < 2500) then

8 f = 64.0/Re

9     end

10     if (((Re >= 2500))) then

11 f = 16.0 * Re ^ (-0.4)

12     end

13     if (-Re) then

14 if (L == 5) then

15 f = 0.06 * Re ^ (-0.4)

16 end if

17     end

18

19     L = 4  
 

Output 
FINAL VALUES OF VARIABLES 
 ========================== 

rho                     =   1.050000     

 v                       =  1.7000000E-03 
 l                       =   4.000000     

 mu                      =  8.5000000E-05 

 re                      =   105.0000     

 f                       =  9.3255732E-03 
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Sample Problem 3. 

This script is used to illustrate the use of do and for loops. For loops are treated 

equivalently as do loops for compatibility with MATLAB syntax. Comments and in-

script documentation are also illustrated. 

 

Model 



UL
Re  

 

 5 AND ReRe16

2500ReRe16

2500Re
Re

64

4.0

4.0











Liff

iff

iff

 

 















01.0ReRe

01.0
2  to1:

ff
Liloop  

 

Input: File equations6.isc 
1     rho, v, L, mu, Re, f, i as real

2

3    # Initial Values

4

5     rho = 1.05

6     v = 17.0e-4

7     L = 5./2.

8     mu = 8.5E-5

9

10    # Models

11

12     Re = rho * v * L / mu

13

14

15     if (Re < 2500) then       % Testing an if segment

16 f = 64.0./Re

17     end

18     if (((Re >= 2500))) then  % Testing a nested if segment

19 f = 16.0 * Re ^ (-0.4)

20     end

21     if (-Re) then             % testing a logical statement

22 if (L == 5) then

23 f = 0.06 * Re ^ (-0.4)

24 end if

25     end

26

27     L = 4   # Reset L

28

29     for   i =  1:2*L          % testing a loop segment

30 f = f  +   0.01

31 Re = Re  +  0.01

32     end

33

34    # Comment line here

35

36     L = 5  
 

 

Output 
FINAL VALUES OF VARIABLES 
 ========================== 

rho                     =   1.05000000000000      

 v                       =  1.700000000000000E-003 
 l                       =   5.00000000000000      

 mu                      =  8.500000000000001E-005 

 re                      =   52.5800000000000      
 f                       =   1.29904761904762      

 i                       =   9.00000000000000      
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Sample Problem 4. 

This script is used to illustrate the use of functions and subroutines. In addition, 

expressions within subprograms are also illustrated. 

 

Model 



UL
Re  

 

2500ReRe16

2500Re
Re

64

4.0 



 iff

iff

 

4 Re06.0

5 Re06.0

Re)(

(Re)

4.0

4.0











Lif

Lif

if

if

 

 















01.0ReRe

01.0
2  to1:

ff
Liloop  

 

Input: File equations6d.isc 
1    program

2  

3    rho, v, L, mu, Re, f, i as real

4

5    # Initial Values

6

7     rho = 1.05

8     v = 17.0e-4

9     L = 5

10     mu = 8.5E-5

11

12    # Models

13

14     Re = Reynolds(rho, v, L, mu)

15

16     mu = 8.5E-5

17     call Computef(Re,f)

18     if (Re) then             % testing a logical statement

19     if (-Re) then             % testing a logical statement

20 if (L == 5) then

21 f = 0.06 * Re ^ (-0.4)

22 end if

23 if (L == 4) then

24 f = 0.06 * Re ^ (-0.4)

25 end if

26     end

27     end

28

29     L = 4   # Reset L

30

31     for   i =  1:2*L          % testing a loop segment

32 f = f  +   0.01

33 Re = Re  +  0.01

34     end

35

36    # Comment line here

37

38      L = 5

39

40     end program

41

42

43     function Reynolds(rho,u,L,mu)

44 rho, u, L, mu, Reynolds  as real

45 Reynolds = rho * u * L / mu

46 u = 12.2

47     end function

48

49

50     subroutine Computef(Re, f)

51 Re, f as real

52     if (Re < 2500) then       % Testing an if segment in a subroutine

53 f = 64.0/Re

54     end

55     if (((Re >= 2500))) then  % Testing a nested if segment in a subroutine

56 f = 16.0 * Re ^ (-0.4)

57     end

58     end subroutine  
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Output 
FINAL VALUES OF VARIABLES 

 ========================== 
 Logical Variables           0 

 Integer2 Variables           0 

 Integer Variables           0 
 Real Variables           7 

 rho                     =   1.050000     

 v                       =   12.20000     
 l                       =   5.000000     

 mu                      =  8.5000000E-05 

 re                      =   105.0800     
 f                       =  8.9325570E-02 

 i                       =   9.000000     

 Double Variables           0 
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Sample Problem 5. 

This script is used to illustrate the use of while statements and elseif and else statements. 

 

Model 



UL
Re  

 

2500ReRe16

2500Re
Re

64

4.0 



 iff

iff

 

 

Lf

Lf

Lf

Lf

Lf

Lf

Lf

f

if

 of eother valuany 007.0

6006.0

5Re06.0

4004.0

3003.0

2002.0

1001.0

Re)(

(Re)

4.0



















 

 



























1

01.0ReRe

01.0

2 :

1

i

ff

Liwhile

i

 

 

Input File: equations6f.isc 
1    program

2  

3    rho, v, L, mu, Re, f, i as real

4

5    # Initial Values

6

7     rho = 1.05

8     v = 17.0e-4

9     L = 5

10     mu = 8.5E-5

11

12    # Models

13

14     Re = Reynolds(rho, v, L, mu)

15

16     mu = 8.5E-5

17     call Computef(Re,f)

18     if (Re) then             % testing a logical statement

19     if (-Re) then             % testing a logical statement

20 if (L == 1) then

21 f = 0.001

22 elseif (L == 2) then

23 f = 0.002

24 elseif (L == 3) then

25 f = 0.003

26 elseif (L == 4) then

27 f = 0.004

28 elseif (L == 5) then

29 f = 0.06 * Re ^ (-0.4)

30 elseif (L == 6) then

31 f = 0.006

32 else

33 f = 0.007

34 end if

35     end

36     end

37

38     L = 4   # Reset L

39

40     i = 1

41     while (i <  2*L) then         % testing a while loop segment

42 f = f  +   0.01

43 Re = Re  +  0.01

44 i = i + 1

45     end

46

47    # Comment line here

48

49      L = 5

50

51     end program

52

53

54     function Reynolds(rho,u,L,mu)

55 rho, u, L, mu, Reynolds  as real

56 Reynolds = rho * u * L / mu

57 u = 12.2

58     end function

59

60

61     subroutine Computef(Re, f)

62 Re, f as real

63     if (Re < 2500) then       % Testing an if segment in a subroutine

64 f = 64.0/Re

65     end

66     if (((Re >= 2500))) then  % Testing a nested if segment in a subroutine

67 f = 16.0 * Re ^ (-0.4)

68     end

69     end subroutine  
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Output 
Logical Variables           0 

 Integer2 Variables           0 
 Integer Variables           0 

 Real Variables           7 

 rho                     =   1.050000     
 v                       =   12.20000     

 l                       =   5.000000     

 mu                      =  8.5000000E-05 
 re                      =   105.0700     

 f                       =  7.9325572E-02 

 i                       =   8.000000     
 Double Variables           0 
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Sample Problem 6. 

This script is used to illustrate the use of while statements and elseif and else statements 

within subroutines and functions. 

Model 



UL
Re  

 

2500ReRe16

2500Re
Re

64

4.0 



 iff

iff

 

 

Lf

Lf

Lf

Lf

Lf

Lf

Lf

f

if

 of eother valuany 007.0

6006.0

5Re06.0

4004.0

3003.0

2002.0

1001.0

Re)(

(Re)

4.0



















 

 



























1

01.0ReRe

01.0

2 :

1

i

ff

Liwhile

i

 

 

Input: File equations6g.isc 
1    program

2  

3    rho, v, L, mu, Re, f, i as real

4

5    # Initial Values

6

7     rho = 1.05

8     v = 17.0e-4

9     L = 5

10     mu = 8.5E-5

11

12    # Models

13

14     Re = Reynolds(rho, v, L, mu)

15

16     mu = 8.5E-5

17     call Computef(Re,f)

18

19

20    # Comment line here

21

22      L = 5

23

24     end program

25

26

27     function Reynolds(rho,u,L,mu)

28 rho, u, L, mu, Reynolds  as real

29 Reynolds = rho * u * L / mu

30 u = 12.2

31     end function

32

33

34     subroutine Computef(Re, f)

35 Re, f, L as real

36 i as integer

37

38 L = 5

39

40     if (Re < 2500) then       % Testing an if segment in a subroutine

41 f = 64.0/Re

42     end

43     if (((Re >= 2500))) then  % Testing a nested if segment in a subroutine

44 f = 16.0 * Re ^ (-0.4)

45     end

46     if (Re) then             % testing a logical statement

47     if (-Re) then             % testing a logical statement

48 if (L == 1) then

49 f = 0.001

50 elseif (L == 2) then

51 f = 0.002

52 elseif (L == 3) then

53 f = 0.003

54 elseif (L == 4) then

55 f = 0.004

56 elseif (L == 5) then

57 f = 0.06 * Re ^ (-0.4) 

58 elseif (L == 6) then

59 f = 0.006

60 else

61 f = 0.007

62 end if

63     end

64     end

65

66     L = 4   # Reset L

67

68     i = 1

69     while (i <  2*L) then         % testing a while loop segment

70 f = f  +   0.01

71 Re = Re  +  0.01

72 i = i + 1

73     end

74     end subroutine  
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Output 
FINAL VALUES OF VARIABLES 

 ========================== 
 Logical Variables           0 

 Integer2 Variables           0 

 Integer Variables           0 
 Real Variables           7 

 rho                     =   1.050000     

 v                       =   12.20000     
 l                       =   5.000000     

 mu                      =  8.5000000E-05 

 re                      =   105.0700     
 f                       =  7.9325572E-02 

 i                       =  8.0000000E+00 
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Sample Problem 7. 

This script is used to illustrate the use of array declaration and the use of arrays within 

expressions. This program is part of a model which computes the aerodynamic 

characteristics of an aircraft fuselage. This program is also useful for demonstrating the 

use of arrays in an iSCRIPT code. 

 

Model 

 

 jjicbik

jjicb

V

S

jj

ref

22 ,2log

122 ,2log

856

325

0











 

 

     65.0258.2

10

16.1

053.1

sup_

053.1

_

144.01Relog

454.0

62.44Re

21.38Re

Re

M
C

M
k

l

k

l

UL

fuselage

fuselagef

cutoff

subcutoff

fuselage





























 

 

d

l
f

S
d

S
A

fuselage

ref

ref

3048.0

/294

5.5

83.3
/294

9.20
max







 

 

fuselage

ref

wet

fd

fuselage

FF
S

S
CC

f

f
FF

fuselage

fuselagefuselage

fuselage

fuselage





0

3 400

60
1
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Input: File equations9.isc 
1 program main

2

3 icount, ik, jj, kk as integer

4

5 Sref,Wo,l,k,Swet_fuselage,alt,mu,rho,R_fuselage,R_cutoff_sub,Cf_fuselage,Amax,d,f_fuselage,R_cutoff_sup as real

6 FF_fuselage,Cdo_fuselage,V,M as real

7

8 iunit, ifile, i, j as integer

9

10 blogic(3,2),brun as logical

11

12 lexist,lrun as logical

13

14 il as integer*2

15 j3,j4 as integer*2

16

17 rlong, rlonger as double

18 rnumber, rnumb, rexp as double

19

20  

21     # ModelEquations

22     #function Cdo_sup = Cdo_Sup

23     #%this code uses the component built method for supersonics guiven by Raymer

24

25     Sref                =  325;

26     V                =   856;

27     blogic(2,2+2*jj) = 1

28     ik = blogic(2,4+2*jj)

29     Swet_fuselage   =  588;

30

31     #fuselage

32

33     Wo              =  24000;

34     l               =  45*0.3048;          #%a * Wo^c * 0.3048

35     k               =  0.052 * 10^(-5);      #%for smooth composite

36

37     alt   =  1800;

38     mu    =  0.00008;

39     rho   =  1.25;

40     M     =  0.85;

41  

42     R_fuselage      = rho * V * l / mu;

43

44     R_cutoff_sub    = 38.21*(l/k)^1.053;                    #%eq 12.28 Raymer

45     R_cutoff_sup    = 44.62*(l/k)^1.053*(M)^1.16;           #%eq 12.29 Raymer

46     Cf_fuselage     = 0.454 / ((log10(R_fuselage))^2.58 * (1+0.144*(M)^2)^0.65);

47

48     Amax          = 20.9/(294/Sref) - 3.83;

49     d             = 5.5/(294/Sref);                  #%sqrt(4/pi*Amax);

50     f_fuselage    = l/(0.3048*d);

51     FF_fuselage   = (1 + 60/f_fuselage^3 + f_fuselage / 400) ;

52

53     Cdo_fuselage    = Cf_fuselage * Swet_fuselage / Sref  *  FF_fuselage ; 

54

55 end program  
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Output 
FINAL VALUES OF VARIABLES 

 ========================== 
Logical Variables           4 

 blogic(3;2)   = F F F T F F 

 brun          = F 
 lexist        = F 

 lrun          = F 

 Integer2 Variables           3 
 il            =      0 

 j3            =      0 

 j4            =      0 
 Integer Variables           8 

 icount        =           0 

 ik            =           1 
 jj            =           0 

 kk            =           0 

 iunit         =           0 
 ifile         =           0 

 i             =           0 

 j             =           0 
 Real Variables          19 

 Sref          =   325.0000     

 Wo            =   24000.00     
 l             =   13.71600     

 k             =  5.2000001E-07 
 Swet_fuselage =   588.0000     

 alt           =   1800.000     

 mu            =  7.9999998E-05 
 rho           =   1.250000     

 R_fuselage    =  1.8345150E+08 

 R_cutoff_sub  =  2.4930214E+09 
 Cf_fuselage   =  1.8315958E-03 

 Amax          =   19.27374     

 d             =   6.079932     
 f_fuselage    =   7.401399     

 R_cutoff_sup  =  2.4110405E+09 

 FF_fuselage   =   1.166486     

 Cdo_fuselage  =  3.8654767E-03 

 V             =   856.0000     

 M             =  0.8500000     
 Double Variables           5 

 rlong         =  0.000000000000000E+000 

 rlonger       =  0.000000000000000E+000 
 rnumber       =  0.000000000000000E+000 

 rnumb         =  0.000000000000000E+000 

 rexp          =  0.000000000000000E+000 
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Sample Problem 8. 

This script was derived from an old FORTRAN code to calculate friction factor. The 

script uses expressions for Darcy-Weisbach, Colebrook, or Churchill equations 

depending on Reynolds number calculated from the input. The Colebrook equations 

require an iterative condition to obtain convergence based on a convergence criterion. 

The output was compared to that of the equivalent FORTRAN program. 

 

Model 



UL
Re  

 

 

Input:  

File: equations13.isc 

(The input file is not reproduced here 

but can be obtained directly from the 

/SampleScript folder of the iSCRIPT 

installation). 

 

 

 

Output: 
FINAL VALUES OF VARIABLES 

 ========================== 
 Logical Variables           0 

 Integer2 Variables           0 

 Integer Variables           5 
 niter                   =           0 

 iter                    =           3 

 ilam                    =           2 
 ierr                    =           0 

 nitre                   =         200 

 Real Variables          32 
diam                    =  1.000000000000000E-002 

 rey                     =   659800.000000000      

 fric                    =  3.794308979507086E-002 
 fric2                   =  3.804064733943083E-002 

 fric3                   =  9.699909063352531E-005 

 friction                =  3.794308979507086E-002 
 rougha                  =  1.000000000000000E-004 

 eps                     =  1.000000000000000E-004 

 rselect                 =  1.000000000000000E-004 
 doveps                  =   100.000000000000      

 epsovd                  =  1.000000000000000E-002 
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 fac1                    =   5.14000000000000      

 fac2                    =   1285.22349993048      
 fac3                    =   1.00723609551218      

 fac4                    =  6.262561683476402E-003 

 fac5                    =   5.13373743831652      
 fac6                    =  0.194789860606491      

 fac7                    =   112.286369433646      

 fac8                    =   135.300985397874      
 fac9                    =   15192.4564311220      

 deltaf                  =  2.070842958548824E-011 

 depst                   =  1.000000000000000E-004 
 g                       =  3.794308979509621E-002 

 r                       = -2.073378274625171E-011 

 small2                  =  1.000000000000000E-009 
 forlog                  =   10.0000000000000      

 fsuggest                =  3.794308979507086E-002 

 drdf                    =   1.00122429181116      
 flowleft                =  4.000000000000000E-004 

 flowmid                 =  2.000000000000000E-004 

 flowmid2                =  5.000000000000000E-005 

 enorm                   =  2.978714945569056E-019 

 Double Variables           0 

 

 

 

 

FORTRAN program 
Results from FORTRAN execution of moodytest.for 

 ================================================ 

 friction=  3.794308979507086E-002 
 fric=  3.794308979507086E-002 

 fric2=  3.804064733943083E-002 

 fric3=  9.699909063352531E-005 
 ilam=           2 

 rey=   659800.000000000      
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Sample Problem 9. 

 

This script was used to illustrate the use of the natural recursive characteristics of 

iSCRIPT functions. The script is used to calculate the factorial of a number. The factorial 

of 4 was computed. 

 

Model 

1!0

12)...1(!



 nnn
 

Input:  

File: equations6kk.isc 
  # Recursice function test using the factorial of a number 

    program 
 

 rnumber, rfactorial as integer 

 # Initial Values 
 

 rnumber = 4 

 

 # Models 

 rfactorial = FACTORIAL(rnumber) 

 
    end program 

 

  # Recursive calculation of the factorial of a number 
    Function FACTORIAL(n) 

 n, rn as integer 

 FACTORIAL as integer 
 if n == 0 

  rn = 1 

 elseif n == 1 
  rn = 1 

 else 

  rn = n * FACTORIAL(n-1) 
 end if 

 FACTORIAL = rn 

 return 
   End Function FACTORIAL 

 

 

 

Output: 
FINAL VALUES OF VARIABLES 

 ========================== 
 Logical Variables           0 

 Integer2 Variables           0 

 Integer Variables           2 
 rnumber                 =           4 

 rfactorial              =          24 

 Real Variables           0 
 Double Variables           0 
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Sample Problem 10. 

 

This script was used to illustrate the use of the passing of literal valued arguments and 

expression arguments to functions. In addition, the syntax function calls within functions 

are illustrated. The model is the same as in Sample Problem 6. 

 

Input:  

File: equations6m.isc 

(The input file is not reproduced here but can be obtained directly from the 

/SampleScript folder of the iSCRIPT installation). 

 

Output: 
FINAL VALUES OF VARIABLES 

 ========================== 

Logical Variables           0 

 Integer2 Variables           0 

 Integer Variables           0 
 Real Variables           7 

rho                     =   1.05000000000000      

 v                       =   12.2000000000000      
 l                       =   5.00000000000000      

 mu                      =  8.500000000000001E-005 
 re                      =   105.000000000000      

 f                       =  4.932557310067764E-002 

 i                       =  0.000000000000000E+000 
 Double Variables           0 
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Sample Problem 12. MATLAB Compatibility 

 

This script was used to illustrate compatibility with MATLAB matrix manipulation 

features. The equivalent MATLAB file is matlaba1.m. 

 

Model 

 
 54321

54321





b

x
 

 





5

1i

iba  

 

)(xsizez   

 





5

1i

ixy  

 

)min(xd  

 

)max(xe  

 

Input File: matlaba1.isc 
i,y,x(5),b(5),z,a,c,d,e as integer 

b = [1 2 3 4 5]; 
x(1)=1; 

x(2)=2; 

x(3)=3; 
x(4)=4; 

x(5)=5; 

% Do add up all the elements of x, use this: 
a = sum(b); 

% which is better than this: 

z = length(x); 

for i=1:length(x) 

    y = y+x(i); 

end 
%c = avg(x); 

d = min(x); 

e = max(x); 

 

 

 

Output: 
FINAL VALUES OF VARIABLES 

 ========================== 

Logical Variables           0 
 Integer2 Variables           0 

 Integer Variables           9 
 i                       =           6 

 y                       =          15 

 x(5)                    =           1           2           3           4 
           5 

 b(5)                    =           1           2           3           4 

           5 
 z                       =           5 

 a                       =          15 

 c                       =           0 
 d                       =           1 

 e                       =           5 

 Real Variables           0 
 Double Variables           0 
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Sample Problem 13. MATLAB Compatibility 

 

This script was used to illustrate compatibility with MATLAB matrix manipulation 

features – in particular the contraction of matrix order. The equivalent MATLAB file is 

matlaba10.m. 

 

Model 

 

  axyb

a ,y ,x









































/

312

0

0

1

987

664

324

 

Input:  

File: matlaba10.isc 
x(3,3),y(3,1),a(1,3) as integer 

b as real 
x = [4, 2, 3; 4, 6, 6; 7, 8, 9]; 

y = [1, 0, 0]; 

a = [2; 1; 3]; 
b = (y / x) * a; 

 

 

Output: 
FINAL VALUES OF VARIABLES 

 ========================== 
Logical Variables           0 

 Integer2 Variables           0 
 Integer Variables           3 

 x(3;3)                  =           4           2           3           4 

           6           6           7           8           9 
 y(3;1)                  =           1           0           0 

 a(1;3)                  =           2           1           3 

 Real Variables           1 
 b                       =  0.0000000E+00 

 Double Variables           0 
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Sample Problem 14. MATLAB Compatibility 

 

This script was used to illustrate compatibility with MATLAB matrix manipulation 

features. The equivalent MATLAB file is matlaba70.m. 

 

Model 

xyxbxyz

b ,y ,x

/2

115

212

014

211

121

112

987

664

324
























































 

 

Input File: matlaba70.isc 

 
i,x(3,3),y(3,3),b(3,3) as integer 

z(3,3),a(3,3) as real 
x = [4, 2, 3; 4, 6, 6; 7, 8, 9]; 

y = [2, 1, 1; 1, 2, 1; 1, 1, 2]; 

b = [4 1 0; 2 1 2; 5 1 1]; 
z = y*x + b*x + 2*y/x; 

a = x + 2 * sin(y); 

 

 
 

Output: 
FINAL VALUES OF VARIABLES 
 ========================== 

Logical Variables           0 
 Integer2 Variables           0 

 Integer Variables           4 

 i                       =           0 
 x(3;3)                  =           4           2           3           4 

           6           6           7           8           9 

 y(3;3)                  =           2           1           1           1 
           2           1           1           1           2 

 b(3;3)                  =           4           1           0           2 

           1           2           5           1           1 
 Real Variables           2 

 z(3;3)                  =   41.66667       35.00000       36.33333     

   47.66667       54.00000       49.33333       50.33333       43.00000     
   61.66667     

 a(3;3)                  =   5.818595       3.682942       4.682942     

   5.682942       7.818595       7.682942       8.682942       9.682942     
   10.81859     

 Double Variables           0 
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Sample Problem 15. MATLAB Compatibility 

 

This script was used to illustrate compatibility with MATLAB function features – 

including the management of function arguments and the use of multiple output 

arguments. The model is the similar to that in Sample Problem 6. 

 

Input:  

File: matlaba14.isc 
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Output: 
FINAL VALUES OF VARIABLES 

 ========================== 
 Logical Variables           0 

 Integer2 Variables           0 

 Integer Variables           1 
 initest3                =        5712 

 Real Variables           9 

 rho                     =   1.050000     
 v                       =  1.7000000E-03 

 L                       =   5.000000     

 mu                      =  8.5000000E-05 
 Re                      =   84.00000     

 f                       =  0.0000000E+00 

 i                       =  0.0000000E+00 
 rtest1                  =   17.00000     

 rtest2                  =   84.00000     

 Double Variables           0
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Sample Problem 16. Multi-Source File projects 

 

This script was used to illustrate the multi-source file project capabilities of iSCRIPT. 

The model is the similar to that in Sample Problem 6.The source files include: 

 

Project1a.isc 

Project1b. isc 

Project1c. isc 

Project1d. isc. 

 

All source files were listed in a single project file: project1.ipr. The source files could 

also be individually entered at the command line. 

 

Input:  

File:project1.ipr 

 

 

Output: 

The output is similar to the Sample Problem 5. 
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Sample Problem 17. Integration with a MATLAB program, 

 

This solution consists of the following files: 

 

PS_conv.m  a MATLAB program that rates a low-bypass turbofan aircraft 

engine. The input to the program includes the altitude, Mach 

number etc. This program reads the input from a file PS_input.txt. 

The output from the program includes several variables including 

the thrust, fuel consumption etc. The output from the program is 

written to a file PS_output.txt. 

 

ata.ipr an iSCRIPT project file containing three files main.isc, 

ps_component.isc, ps_setting.isc. These files are described below. 

 

Main.isc a main program defining two components – PS_setting and 

PS_Component. PS_Setting simply sets the conditions for 

computing (rating) the aircraft engine. 

 

PS_component.isc an iSCRIPT component model file. This model file includes 

commands to execute the MATLAB model. An input file is 

created for the MATLAB program and the output from the 

MATLAB is read. The output is further used to compute certain 

quantities including the total exergy destruction in the engine. 

 

 

Procedures for Running this Solution 

 

1. Run the MATLAB program in MATLAB to check the model of the aircraft 

engine. 

2. Compile the MATLAB program into an executable. This step includes issuing 

the command mcc –m PS_conv. An executable is generated names 

PS_conv.exe. This executable was renamed to PS.exe. 

3. Run iSCRIPT. Enter the project file ata.ipr at the iSCript prompt 

4. View the results. 

5. Note that the model may be further optimized on the high-level using the 

optimization procedures present in the iSCRIPT program. 
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Sample Problem 18. Test of Input/Output and Directory Management 

Commands 

 

This sample problem file illustrates the various input/output and directory manipulation 

commands. The file is equations24.isc and is listed below. The model and output is the 

same as that in Sample Problem 1. 

 

    # Test of open/close read/write" 

    alt,    T,    P,    mu,    rho,    alt_1, var2, var4 as real 

    imyopen, imyoout, iout, irun as integer 

    var3(3) as real 

 

    imyopen = open('input.txt', 'rt+') 

    call write(6,'File input file opened on unit: ', imyopen) 

    imyoout = open('output.txt', 'wt+') 

    call write(6,'File opened output file on unit: ', imyoout) 

 

    call write(6) 'Press any key to continue' 

    call read(6) 

 

    call read(imyopen,'*%g6') alt_1 

    var3 = fscanf(imyopen, *)  

 

    write 'Enter a value for var4' 

    call read (6) var4 

 

    alt = alt_1 * 0.3048 

    T   = (2.29013E-12*alt*alt*alt+8.60446E-08*alt*alt-6.82246E-

03*alt+3.18150E+02) 

    P   = 101325*(9.63714E-19*alt*alt*alt*alt - 1.18488E-13*alt*alt*alt)  

    P   = P + 101325*(5.52991E-9*alt*alt- 1.18225E-4*alt + 1) 

    mu  = (1.61988E-7*T*T*T-4.66143E-4*T*T+7.25242E-1*T+4.20454)*1e-7 

    rho = P/287/T 

 

    irun = execute('PS.exe') 

    if (irun == -1) then 

 call write(imyoout, *) 'Executable did not run or could not be located' 

    end if 

 

    call write(imyoout) 'My current directory is:', currentdirectory 

    changedirectory('D:\alabi') 

    call write(imyoout) 'My new directory is:', currentdirectory 

    changedirectory('') 

    call write(imyoout) 'My final directory is:', currentdirectory 

    call write(imyoout,*) 

    call fprintf(imyoout,'') 
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    call write(imyoout, 'rho = ', rho, ', T = ', T, ', P = ', P, ', mu = ', mu) 

    call rewind(imyopen) 

    call read(imyopen, *) var2 

    call close(imyopen) 

    call close(imyoout) 

Instructions:  

1. Run the above script. 

2. Examine the output files and compare with the input I/O calls in the script as well 

as the output of Sample Problem 1. 
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Sample Problem 19. Executing an iSCRIPT program in Parallel 

 

Any iSCRIPT program (that can run on a single processor computer) can execute in 

parallel in a multi-processor environment. However, this example illustrates the use of 

iSCRIPT in optimizing a problem is parallel. 

 

This sample problem file contains a main program and a subroutine which evaluates a 

model. The model is the Rastrigin equation as shown below. 

 

)2cos2(cos1020)( 21

2

2

2

1 xxxxxf    

 

This function has several local minima making it difficult for a gradient-based procedure 

to capture the actual minimum without the benefit of a good starting or guess value. The 

actual minimum value is 0 and occurs at the values of (x1, x2) =  (0,0). 

 
Figure P19.1. Plot of the Rastrigin function. 

 

 

The file is rastrigin.isc and is listed below. 

 

 

 

# This is the system program.  

# This program defines all components, subsystems, and systems  

 

program main 

 

  #global pi as double 

  #pi = 4*atan(1.0) 

Global minimum 
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#.1 Create the components 

 

#.2 Create the subsystems (One component, One subsystem, one system) 

  

   # Create the entire system component and its variables 

   CreateComponent(Rastrigin, Models_entire_system) 

   CreateVariable(Rastrigin, y, double, 0,0, 1.0E14, 0.0, 0.0, $) 

   CreateVariable(Rastrigin, x1, double, 0,0, 10.0, -10.0, 0.5, kg/s) 

   CreateVariable(Rastrigin, x2, double, 0,0, 10.0, -10.0, 0.5, m2) 

 

   AddObjective(Rastrigin, y, 0) 

 

   AddVarObjective(Rastrigin, x1) 

   AddVarObjective(Rastrigin, x2) 

  

#.3 Evaluate the system at the initial conditions, then optimize 

   #Rastrigin.Execute 

 

   Global.maxPopulation = 4000 

   Global.maxInitialEvaluations = 10000 

   Global.maxGenerations = 200 

   Global.optconvergencelimit =   1.0E-7 

   Global.mutationfreq =   0.2 

   Global.sampsizepervariable = 8000 

 

   #Try 

   Global.maxPopulation = 100 

   Global.maxInitialEvaluations = 500 

   Global.maxGenerations = 100 

   Global.optconvergencelimit =   1.0E-7 

   Global.mutationfreq =   0.2 

   Global.sampsizepervariable = 200 

 

   #Try 

   Global.maxPopulation = 100 

   Global.maxInitialEvaluations = 400 

   Global.maxGenerations = 100 

   Global.optconvergencelimit =   1.0E-7 

   Global.mutationfreq =   0.2 

   Global.sampsizepervariable = 100 

 

   #Try 

   Global.maxPopulation = 70 

   Global.maxInitialEvaluations = 200 

   Global.maxGenerations = 10 
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   Global.optconvergencelimit =   1.0E-7 

   Global.mutationfreq =   0.2 

   Global.sampsizepervariable = 90 

 

   Rastrigin.Optimize 

 

end program 

 

 

subroutine Rastrigin () 

#This subroutine is an execute model for entire subsystem (and system) 

  x1, x2, pi As Double 

  x1 = Rastrigin.x1 

  x2 = Rastrigin.x2 

  pi = 4*atan(1.0) 

  #pi = 3.1415926536 

  Rastrigin.y = 20.0 + x1*x1 + x2*x2 - 10*(cos(2*pi*x1) + cos(2*pi*x2)) 

end subroutine 

 

 

Output 

The output file again is outputscript.txt. The correct results were obtained in about 2.9 

seconds on a Pentium workstation using only a population of 70 realizations. 

Details of the optimization process are recorded in the file optimize.txt. The details 

include the initial values of the optimization variables and the objective, the various 

realizations of the system being evaluated, the array of viable systems or realizations 

(population of individuals in genetic algorithm parlance) by generation or as the 

optimization progresses, and the final results. 
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