

iSCRIPT User’s Manual

TTC Technologies, Inc.

P.O. Box 1527

Stony Brook, New York 11790

June 2006, August 2006, December 2006, April 2007, July 2007, November 2007

© 2006-2007. Copyright TTC Technologies, Inc.

 ii

Table of Contents

1. Introduction 1

1.1. Introduction to Industrial Design/Optimization 1

1.2. Why We Developed iSCRIPT 3

1.3. How We Want You to See iSCRIPT 4

1.4. Conventions Used in this Manual 5

2. Installation 6

2.1. System Requirements 6

2.2. Required Software 6

2.3. Installing the Required Software 7

2.4. iSCRIPT Files 11

2.5. Running Sample Problems 12

2.6. Output Files 14

3. Developing and Executing an iSCRIPT Project 15

3.1. Using iSCRIPT to Solve Basic Arithmetic and Algebraic Problems 15

3.2. Using iSCRIPT for Performance Analysis of Engineering Systems 16

3.3. Using iSCRIPT to Optimize an Engineering System 19

4. Using iSCRIPT in Simple Problems 22

4.1. Getting Started 22

4.2. A Simple First iSCRIPT Program: Calculate “2+3” 23

4.3. Another Simple Problem: Aircraft Drag Calculation 26

4.4. Another Arithmetic Problem: Circular Cylinder Geometry 31

5. Engineering Component Modeling in iSCRIPT 35

5.1. Component Modeling in iSCRIPT 35

5.2. Creating Subsystems and Systems in iSCRIPT 38

5.3. Solving a Problem Using Component Modeling or Decomposition Method 38

5.4. Writing a Program in Several Script Files 40

5.5. Example of a Program Developed in Several Script Files 41

5.6. Example of a System with Several Components 43

 iii

Table of Contents, cont’d.

6. Optimization in iSCRIPT 49

6.1. Optimization Based on Component Modeling 49

6.2. Optimization of a System with a Single Component 51

6.3. Optimization of a System with Multiple Components 54

7. Running iSCRIPT in Parallel 60

7.1. System Requirements 60

7.2. Running an iSCRIPT Program in Parallel 60

7.3. A Sample Optimization Problem Running in Parallel 61

8. Interfacing with Other Software 64

8.1. Purpose 64

8.2. Running a Third-Party Software or Executable 64

8.3. Setting/Changing the Working Directory 65

8.4. Determining the Working Directory 65

8.5. Example of Running a MATLAB Script 65

8.6. Running an Executable (or Third-Party Software) 68

9. Conclusions 71

Appendix A. iSCRIPT Language Reference 72

A.1. Variables and Expressions 72

A.2. Arrays 76

A.3. Decision Structure 77

A.4. Loop Structure 77

A.5. Subprogram and Function 79

A.6. Other Program Flow Structure 83

A.7. Intrinsic Functions 85

A.8. Input/Output 85

A.9. Component Modeling 89

 iv

Table of Contents, cont’d.

Appendix B. iSCRIPT Optimization Reference 93

B.1. Design/Optimization Analysis Procedures 93

B.2. Procedures for Performing a Detailed Optimization in iSCRIPT 94

Appendix C. More Sample Problems 104

Reference s 134

 1

1. Introduction

1.1. Introduction to Industrial Design/Optimization

iSCRIPT was developed primarily for performance calculations and design/optimization

of engineering systems, with a focus on large systems. As a result, iSCRIPT was designed

to include tools for modeling and optimizing large-scale systems. It has provisions for

modeling a system in a decomposed fashion, and automatically executes in parallel, taking

advantage of multi-processor computational resources. iSCRIPT also contains novel

optimization procedures, which allow for the optimization of decomposed systems in an

efficient manner. To facilitate detailed modeling of engineering components and systems,

iSCRIPT has the full features of a programming language, comparable to those available in

traditional programming environments such as FORTRAN.

A common technique for carrying out a multi-level design/optimization can be divided into

three tasks, as shown in Figure 1.1 below.

• Physical

• Disciplinary

• Conceptual

• Time

Decomposition

• Function interpreters

• Approximation methods

(ORSs)

• Multiple software and

modeling tools

Modeling

• Local/Global optimization

• Optimization procedures

· Gradient-Based

· Evolutionary

· AI/Expert systems

Optimization

• Physical

• Disciplinary

• Conceptual

• Time

Decomposition

• Physical

• Disciplinary

• Conceptual

• Time

Decomposition

• Function interpreters

• Approximation methods

(ORSs)

• Multiple software and

modeling tools

Modeling
• Function interpreters

• Approximation methods

(ORSs)

• Multiple software and

modeling tools

Modeling

• Local/Global optimization

• Optimization procedures

· Gradient-Based

· Evolutionary

· AI/Expert systems

Optimization
• Local/Global optimization

• Optimization procedures

· Gradient-Based

· Evolutionary

· AI/Expert systems

Optimization

Figure 1.1. Tasks in a multi-level design/optimization analysis.

1.1.1. Decomposition

In physical decomposition, the system is divided up into physically-interacting subsystems,

each possessing a certain degree of autonomy but depending on other subsystems via a

number of coupling variables. Disciplinary decomposition divides the system along the

lines of different disciplines, such as thermodynamics, economics, aerodynamics, etc.

Conceptual decomposition breaks down the system according to the type of variables. For

 2

instance, the system can be broken down into operational variables that vary in time and

those that do not vary in time. Time decomposition decomposes a dynamic problem into a

series of quasi-stationary problems or a series of stationary time segments.

1.1.2. Modeling

Modeling of the various subsystems in a large system typically involves software products

from different vendors. A great challenge in this step is the integration of the different

software products. Several levels can be identified in the multi-level modeling and

optimization process:

Low-Level Function Interpreters and Symbolic Language Programs

These are tools that allow an engineer to specify the equations and models comprising a

component in a mathematical form, aggregate these low-level models into higher-level

models through additional mathematical expressions and functions. In principle, a complete

system can be built using low-level functions. However, the procedure is difficult and

prone to error. Sample tools in this category include spreadsheets, such as Excel, and

programming and scripting languages, such as MATLAB, Mathematica, or Maple.

Aggregated Component Tools

These are pre-packaged tools for specific models. Examples include engine simulator for

computing the thrust and weight of the propulsion system (e.g., Weight Analysis of

Turbine Engines (WATE)) or ADVISOR, a public domain drive-train analysis tool, or a

heat exchanger program for the various heat exchangers in the sub-systems of aircraft.

Component tools are typically treated as a “black box” in the integration of models into the

complete system.

Approximation Tools

Response surfaces may be generated from measurements of the performance of a

component as a function of selected decision variables and used as the model in the multi-

level optimization phase.

1.1.3 Optimization

The use of a detailed representation of a component is a critical factor in terms of

computational resources. The problems of interest are typically multi-objective, with

objectives such as:

 drag minimization (or maximization of lift/drag ratio in a mission segment)

 gross take-off weight minimization

 fuel consumption minimization

 minimization of acoustic noise during take-off and landing

 cost minimization (capital, operating, and environmental)

Although the capability for multi-objective optimization is usually important, a

recombination of the various objectives into a single metric, such as exergy, may

sometimes alleviate the multi-objective requirement. iSCRIPT optionally supports exergy-

based optimization of aircraft.

 3

Optimization procedures include gradient formulation and genetic algorithms (GA).

Gradient-based methods work well for subsystems with continuous variables, but are prone

to local optima and divergence when the initial guess solutions are far from the true

solutions. Procedures based on genetic algorithms and expert systems are more

computationally intensive, but they are not as prone to local optima (are more tolerant to

arbitrary initial guess), and can be used for mixed integer problems. In aerospace

engineering, the variables include integers, Boolean, and continuous variables. GAs are

utilized to isolate the optima while the gradient-based method can be combined with the

GA to speed up the “climb to the peak,” once all integer variables are set. In other words, a

combination of several optimization procedures is typically used for a complex problem.

1.2. Why We Developed iSCRIPT

iSCRIPT was developed mainly because existing tools for engineering design were not

explicitly developed for that purpose, and were therefore unable to take advantage of the

inherent structures that are present in engineering problems. Engineering context includes

(engineering) units, material or physical limits (constraints), or the natural association of

variables with components or system, and the association of components with systems or

subsystems. Engineers must fill this gap by writing codes to convert variables between

different engineering units and procedures, and to coordinate the association of components

within a system. This makes the development of detailed large systems very unwieldy and

error-prone.

With improved computational power and little additional work, engineers can now afford

to carry out performance analysis and design/optimization to increased levels of fidelity.

iSCRIPT takes advantage of modern computer architecture by implementing procedures to

automatically operate in a parallel environment without requiring the designer to explicitly

parallelize models, as would be necessary in a traditional programming environment.

One problem facing designers of large-scale engineering systems is that the models for the

design are not always available a single software or programming platform. For instance,

engineers designing aircraft may sometimes call on the code – WATE – for the modeling

of an engine separate from other models, which may be implemented in other software

products. System modeling and design tools must allow systems to be built based on

components, some of which are modeled in a different software or programming platform.

iSCRIPT is being developed with this cross-platform operability in mind.

1.3. How We Want You to See ISCRIPT

Although iSCRIPT can be used in the same manner as a traditional programming

environment, with all the features of a programming language, including decision

structures, loop elements, array variables, and subprogram units, it was designed primarily

for performance analysis and design optimization of engineering systems. Systems can be

 4

described in a building block manner as being composed of subsystems which, in turn, are

composed of components (Figure 1.2).

System

Subsystem

Component Component

Subsystem

Variables Functions Model

System

Subsystem

Component Component

Subsystem

Variables Functions Model

Figure 1.2. Elements of an iSCRIPT system project.

Consequently, iSCRIPT can accommodate virtually any decomposition procedure, as the

components may be models of physical components, conceptual segments of a system, or a

disciplinary subdivision of a system.

iSCRIPT also contains built-in procedures for optimizing a system made up of decomposed

subsystems using the iterative local-global optimization (ILGO) procedure.

As previously mentioned, iSCRIPT was designed to automatically execute in a parallel

environment, taking advantage of multi-processor facilities for faster turn-around on

simulation tasks.

To provide system-of-systems features, iSCRIPT can execute third-party software,

potentially providing access to models available on other software products. iSCRIPT is

also compatible with some engineering modeling environments, such as FORTRAN and

MATLAB. Programs developed in these environments can, with minimum modification,

be run in iSCRIPT or included as part of an iSCRIPT system model.

1.4. Conventions Used in this Manual

The following conventions have been adopted in this manual:

 Arial font will be used for script segments, iSCRIPT keywords, and commands that

should be typed on the keyboard as input. For example:

if (Burner.T > 2700) then

 5

CreateComponent (name [,description])

 Segments of a syntax enclosed within square brackets are optional. For instance,

given the above syntax template for the CreateComponent command, the

following two instances of using the command are acceptable:

CreateComponent (Burner, ‘Engine Burner’)

CreateComponent (Burner)

Note that the comma “,” inside the square bracket is omitted when the choice is that

of using the syntax without the square bracket.

 File names and paths are usually italicized Times Roman. For example in the

instruction below, the italicized portion represents a file path and name:

Open the file \SampleScripts\HeatRejection\outputscript.txt in the iSCRIPT

installation directory.

 6

2. Installation

2.1. System Requirements

ISCRIPT requires the following:

 Windows 2000/XP/2003, Mac, or Linux

 Pentium processor with at least 128MB

2.2. Required Software

The following software products may be required in order to use iSCRIPT:

 iSCRIPT installation file

 MPICH, for execution of iSCRIPT in parallel.

Note: MPICH is optional. It is only needed for parallel calculation. If sequential calculation

is needed, you do not need to install MPICH.

Obtain these software products as shown below.

(1) The installation file for ISCRIPT can be downloaded from

http://www.ttctech.com/SiteFiles/Downloads/iscript_install.exe.

(2) MPICH, developed by Argonne National Laboratory, is a freely available, portable

implementation of MPI, a standard for message-passing protocol for distributed-

memory applications used in parallel computing. MPICH can be downloaded from

http://www.mcs.anl.gov/mpi/mpich/

ftp://ftp.mcs.anl.gov/pub/mpi/nt/mpich.nt.1.2.5.exe
http://www.mcs.anl.gov/mpi/mpich/

 7

2.3. Installing the Required Software

(1) To install iSCRIPT:

 Double-click the installation file.

 Click “Install.”

 Select where to install iSCRIPT and click “OK.”

 It may take several minutes for the installation files to be copied.

 8

 Click “OK.”

 Click “OK.”

(2) Install MPICH (Optional; only needed for parallel calculation):

 Double click the installation file.

 Click “Setup.”

 Click “Next.”

 9

 Select where to install MPICH, then click “Next.”

 Click “Next.”

 10

 Click “Next.”

 Click “Next.”

More information about the installation of MPICH can be found on the MPICH

website.

(3) Installed Files

After iSCRIPT is installed, several folders and executable files are installed in the

installation directory (default is C:\iSCRIPT). These main files or folders are:

iscripteditor.exe sysdes.exe parser.exe iscript_mp.exe SampleScripts
folder

ata
folder

doc
folder

uninst
folder

iSCRIPT Folder

 11

iscripteditor.exe – iSCRIPT editor, an iSCRIPT code developing environment.

sysdes.exe – sequential iSCRIPT executable file. No diagnostic information is

printed out by this executable (a quiet mode compared with

Parser.exe).

parser.exe – iSCRIPT analyzer, a sequential iSCRIPT executable file, which

is intended to print diagnostics to an output file during execution.

iscript_mp.exe – a parallel iSCRIPT executable file, which can calculate the

problem in parallel machines

SampleScripts – contains the iSCRIPT sample problems

ata – contains the iSCRIPT codes for the ata project

doc – contains the integrated help files for iSCRIPT Editor

unist – contains the iSCRIPT “uninstall” information

2.4. iSCRIPT Files

There are two types of iSCRIPT files: project files and script files, with the file extensions

*.ipr and *.isc, respectively. Sample iSCRIPT codes are presented in Chapter 3. In this

manual, iSCRIPT files and the source scripts developed to solve a specific problem are

referred to as an iSCRIPT solution.

Note: iSCRIPT is not case-sensitive.

2.4.1. Script Files (*.isc)

An iSCRIPT file contains source code. Each file may contain a single program,

subprogram, function, or component subprogram, or simply lines of codes not wrapped in

any particular structure (program, subprogram, or function). A component subprogram may

be considered as a special type of subprogram that computes or solves equations necessary

for the performance analysis of the component. An iSCRIPT file may also contain several

subprograms and/or functions.

2.4.2. Main Program

When an iSCRIPT solution includes at least one subroutine or function, it is considered as

having a program structure. Every iSCRIPT solution with a program structure must contain

a main program. There must be only one main program in a solution. When a solution has a

program structure, the execution of an iSCRIPT code starts from the main program. When

 12

iSCRIPT is used in a component modeling form, the main program usually consists of two

parts. The first part is the component creation and component variable declaration, and the

second part contains the system evaluation and/or optimization commands.

When a solution has no program structure (and necessarily comprises of a single file), the

execution simply starts from the iSCRIPT file at the first line.

2.4.3. Project Files (*.ipr)

When a solution developed in iSCRIPT includes more than one iSCRIPT file, an iSCRIPT

project file (*.ipr) is needed to aggregate all the files. The project file obeys the following

rules:

(1) The file content must start with a unique keyword “project” on the first line.

(2) Both the name and directory of the script files should be included inside the project

file. When the script files and the project file are in the same folder, the directory

information of the script files may be omitted.

(3) At least one of the script files must contain a main program, which is described in

2.4.2.

An example of a project file is shown below. In the example below, no path information is

included, as all the iSCRIPT files associated with the solution and listed in the project file

are contained in the same folder.

Figure 2.1. Sample project file.

2.5. Running Sample Problems

Sample problems are provided for you in the /SampleScripts subdirectory of the folder in

which you installed iSCRIPT. They can be opened, edited, and run in iSCRIPT Editor

environment. In this manual, several examples are provided and described in detail in

Chapters 4 and 5. The procedure for launching the editing environment is described below.

 13

(1) Open iSCRIPT Editor.

(2) In iSCRIPT Editor, open the iSCRIPT project file HeatRejection.ipr located in the

/SampleScripts/HeatRejection subfolder of the iSCRIPT installation folder.

 The project file will open, as shown below.

 14

(3) On the toolbar, select “Tools > Run Current Script/Project File” to run the project file.

 The following screen will appear, containing the output of the program.

2.6. Output Files

 15

The results of a calculation are stored in the file outputscript.txt in the same folder of the

project file, which contains the computation results of all component variables. You can also

add your own I/O using iSCRIPT I/O commands. For projects involving optimization,

additional information can be found in the file optimize.txt. The information includes the initial

values of the optimization variables and the objective function, the various realizations of the

system being evaluated, the array of viable systems or realizations (population of individuals in

genetic algorithm parlance) by generation or as the optimization progresses, and the final

optimized results.

 16

3. Developing and Executing an iSCRIPT Project

In this chapter, we introduce the most basic iSCRIPT procedures for solving an arithmetic

and algebraic problem, evaluating the performance of an engineering system, and

optimizing an engineering system.

3.1. Using iSCRIPT to Solve Basic Arithmetic and Algebraic Problems

iSCRIPT has a built-in functionality for arithmetic and algebraic operations. This enables

iSCRIPT to perform most mathematic calculations, like some common symbolic

computation software, such as Matlab, Maple, Mathematica, and Mathcad, and

programming languages, such as FORTRAN and C.

In the current version of iSCRIPT, a math problem is solved by wring a small script. This is

most conveniently done in the iSCRIPT Editor environment. A GUI is being developed

that will allow the user to directly evaluate the values of mathematic equations in a

command window.

Open iSCRIPT Editor and create a new

script file (*.isc)

Write the script code in the file.

• Declare variables

• Type the text form of the equations

Save the file and run the file by select

menu “Tool Run Current Script/Project File”.

Find result on screen or in the file

“outputscript.txt”

General code format

Example code

Open iSCRIPT Editor and create a new

script file (*.isc)

Write the script code in the file.

• Declare variables

• Type the text form of the equations

Save the file and run the file by select

menu “Tool Run Current Script/Project File”.

Find result on screen or in the file

“outputscript.txt”

General code format

Example code

Figure 3.1. The basic procedure for solving an arithmetic and algebraic problem in

iSCRIPT.

Figure 3.1 summarizes the basic procedure for solving an arithmetic and algebraic problem

in iSCRIPT. The steps are also listed below:

 17

Step 1. Open iSCRIPT Editor by selecting “iSCRIPT Editor” from the Windows

“Start” menu.

Step 2. Create a new file in iSCRIPT Editor and save it as an *.isc file.

Step 3. Type the word “program main” in the first line of the file.

Step 4. Declare all the variables in the equations by typing the expressions like “x as

real,” “x, y as integer,” etc. Variable types and their declaration in iSCRIPT

can be found in Appendix A.1.1.

Step 5. Type the equations in text form, such as “x=2+3,” “y=log(x)+sin(x)exp(x^2),”

etc. The mathematical operations supported in iSCRIPT can be found in

Appendix A.1.

Step 6. Type the word “end program” in the last line of the file.

Step 7. Save the file.

Step 8. Select “Tools > Run Current Script/Project File” from the menu to run the

iSCRIPT file.

Step 9. View the output on screen or in the file “outputscript.txt.”

Note that Steps 3 and 6 may be omitted if you do not wish to adopt a program structure for

your solution. However, you must adopt a program structure if you must use subroutines or

functions in a solution. The details of these procedures are illustrated in sample problems in

Chapters 4 and 5.

3.2. Using iSCRIPT for Performance Analysis of Engineering Systems

iSCRIPT uses a decomposition technique to simulate an engineering system. Outside of

iSCRIPT, the system is first decomposed into several components, either physically,

conceptually, or along disciplinary lines. The variables of each component as well as the

constraints (engineering limits, material constraints, etc.) to the variables are then

identified. An example could be the fluid inlet temperature into the Burner component of

an aircraft engine. This variable may be constrained to temperatures less than 2800K for

safe operation of the burner material. Operating variables are also identified, and are

considered as system variables, as they do not belong to a particular component. An

example could be the flight Mach number and altitude at which an aircraft engine is

operating.

In iSCRIPT, each component is modeled in a separate subprogram (a piece of iSCRIPT

code containing the equations of the component). The component routine may also access

or call other functions, subprograms, or other component routines as part of its model.

Interactions between a component and other components may also be included in a

component subprogram. The entire system may be modeled by modeling (calling each

component model) each of its components. The system model may also include interactions

between the components of the system.

Figure 3.2 summarizes the basic procedures for performance analysis of an engineering

system in iSCRIPT, using a simple gas exhaust system for illustration. The basic steps are

also listed below:

 18

Step 1. Open iSCRIPT Editor by selecting “iSCRIPT Editor” from the Windows

“Start” menu.

Step 2. Create a new file in iSCRIPT Editor and save it as an *.isc file.

Step 3. Type the words “program programname” and “end program” to create a

main program. In the body of the main program:

a. declare all the system’s components and their variables. To declare a

component, use the CreateComponent statement. To declare a

component variable, use the CreateVariable statement

b. declare the overall system and its variable using CreateComponent and

CreateVariable statements

c. assign the input values to the system or component variables by typing

“ComponentName.VariableName = expression”

d. type “SystemName.Execute” to evaluate the overall system.

Step 4. After the main program is written, type words “subroutine
ComponentName()” and “end subroutine” to create the component

subprograms for each of the system components. In the body of the

subroutine:

a. type all the equations modeling the component.

Step 5. After the component subroutines, type the keyword “subroutine
SystemName()” and “end subroutine” to create the system subprogram for

the overall system. In the body of the subroutine:

a. evaluate each component of the system by typing

“ComponentName.Execute” in the system subprogram

b. if there are interactions between the components, type the interaction

equations

c. type the overall system performance evaluation equations.

Step 6. Save the file in iSCRIPT Editor as an *.isc file.

Step 7. Select “Tools >Run Current Script/Project File” from the menu to run the

iSCRIPT code.

Step 8. View the output on screen or in the file “outputscript.txt.”

The details of these procedures are illustrated in sample problems in Chapter 5.

 19

Decompose the engineering system

•Create the main program

•Create components by using CreateComponent statement

•Create component variables by using CreateVariable statement

•Create system by using CreateComponent statement.

•Create system variables by using CreateVariable statement

•Assign the input value for system or component variables

•Execute the system by using system_name.Execute

Simulate each component

•Create the subroutine for each component

•Type all the equations for the component

Simulate the overall system

•Create the subroutine for the system

•Execute the components in order by using

component_name.Execute statement.

•Type the interaction equations between components

•Type the overall system performance equations.

Run the program by selecting “Tools > Run Current Script/Project File”

Create the script file in iSCRIPT Editor Example: A gas exhaust system which consists of two components:

pipe and pump. The costs of pipe and pump are 160D and 2.2 x 108w,

respectively, where D is the diameter of pipe and w is the gas mass

flow rate of pump. Evaluate the overall system cost. Assume D=110

and w=0.020. Decompose the engineering system

•Create the main program

•Create components by using CreateComponent statement

•Create component variables by using CreateVariable statement

•Create system by using CreateComponent statement.

•Create system variables by using CreateVariable statement

•Assign the input value for system or component variables

•Execute the system by using system_name.Execute

Simulate each component

•Create the subroutine for each component

•Type all the equations for the component

Simulate the overall system

•Create the subroutine for the system

•Execute the components in order by using

component_name.Execute statement.

•Type the interaction equations between components

•Type the overall system performance equations.

Run the program by selecting “Tools > Run Current Script/Project File”

Create the script file in iSCRIPT Editor Example: A gas exhaust system which consists of two components:

pipe and pump. The costs of pipe and pump are 160D and 2.2 x 108w,

respectively, where D is the diameter of pipe and w is the gas mass

flow rate of pump. Evaluate the overall system cost. Assume D=110

and w=0.020.

Figure 3.2. The basic procedure for performance analysis of an engineering system in iSCRIPT.

 20

3.3. Using iSCRIPT to Optimize an Engineering System

iSCRIPT’s built-in procedures can automatically optimize an engineering system that

is formulated in component decomposition form, as illustrated in Section 3.2. The

way to optimize an engineering system (assuming a single objective variable) is

similar to that for performance analysis, except:

 an objective variable must be indicated, in addition to the requirements for

system performance evaluation

 optimization variables must be indicated, in addition to the requirements for

system performance evaluation

 indicate the relations between the system components and the system

 “System.Optimize” command is used instead of “System.Execute.”

Figure 3.3 summarizes the basic procedures required to optimize an engineering

system in iSCRIPT. Note that the objective variable (the variable that we want to

optimize) is declared by using the statement “AddObjective.” The optimization

variables (the variables that are free to be changed during the optimization) are

declared by using statement “AddVarObjective.” The basic steps are listed below:

Step 1. Open iSCRIPT Editor by selecting “iSCRIPT Editor” from the Windows

“Start” menu.

Step 2. Create a new file in iSCRIPT Editor and save it as an *.isc file.

Step 3. Type the words “program programname” and “end program” to

create a main program structure. In the body of the main program:

a. declare all the system’s components and their variables. To declare a

component, use the CreateComponent statement. To declare a

component variable, use the CreateVariable statement.

b. declare the overall system and its variable using CreateComponent
and CreateVariable statements.

c. assign the input values to the system or component variables by

typing “ComponentName.VariableName = expression”

d. declare the objective variable by using “AddObjective” statements

e. declare the optimization variables by using “AddVarObjective”

statements

f. indicate the relations between the system components and the system

by using “AddSubComponent” statements

g. type SystemName.Optimize to optimize the overall system.

Step 4. After the main program, type keywords “subroutine
ComponentName()” and “end subroutine” to create the component

subroutines for each component. In the body of the subroutine:

a. type all the equations modeling the component.

Step 5. After the component subroutines, type the word “subroutine
SystemName()” and “end subroutine” to create the system

subroutine. In the body of the subroutine:

 21

a. evaluate each of the system’s components by typing

“ComponentName.Execute”

b. if there are interactions between the components, type the interaction

equations between the components

c. type the overall system performance evaluation equations.

Step 6. Save the file.

Step 7. Select “Tools > Run Current Script/Project File” from the menu to run

the iSCRIPT code.

Step 8. View the output on screen or in the file “outputscript.txt.”

The details of these procedures are illustrated in sample problems in Chapter 5.

 22

Decompose the engineering system

•Create the main program

•Create components by using CreateComponent statement

•Create component variables by using CreateVariable statement

•Create system by using CreateComponent statement.

•Create system variables by using CreateVariable statement

•Assign the input value for system or component variables

•Declare the objective variables by using AddObjective statement

•Declare the optimization variables by using AddVarObjective

statement

•Indicate the subsystems by using AddSubComponent statement

•Optimize the by system using System.Optimize

Simulate each of component

•Create the subroutine for each component

•Type all the equations for the component

Simulate the overall system

•Create the subroutine for the system

•Execute the components in order by using

component_name.Execute statement.

•Type the interaction equations between components

•Type the overall system performance equations.

Run the program by selecting “Tools > Run Current Script/Project File”

Create the script file in iSCRIPT Editor

Example: Find the optimum values of D and w to minimize the total

cost of gas exhaust system. Assume 90<D<150 and 0.015<w<0.055.
Decompose the engineering system

•Create the main program

•Create components by using CreateComponent statement

•Create component variables by using CreateVariable statement

•Create system by using CreateComponent statement.

•Create system variables by using CreateVariable statement

•Assign the input value for system or component variables

•Declare the objective variables by using AddObjective statement

•Declare the optimization variables by using AddVarObjective

statement

•Indicate the subsystems by using AddSubComponent statement

•Optimize the by system using System.Optimize

Simulate each of component

•Create the subroutine for each component

•Type all the equations for the component

Simulate the overall system

•Create the subroutine for the system

•Execute the components in order by using

component_name.Execute statement.

•Type the interaction equations between components

•Type the overall system performance equations.

Run the program by selecting “Tools > Run Current Script/Project File”

Create the script file in iSCRIPT Editor

Example: Find the optimum values of D and w to minimize the total

cost of gas exhaust system. Assume 90<D<150 and 0.015<w<0.055.

Figure 3.3. General procedures for optimizing an engineering system in iSCRIPT.

 23

4. Using iSCRIPT in Simple Programs

In this chapter, we will introduce the most basic iSCRIPT statements and use them

to write some simple programs. The simplicity of the sample problems does not

limit the usefulness of the basic iSCRIPT procedures.

4.1. Getting Started

Using iSCRIPT for the first time is easy. In this and the following sections, we will

introduce you to the iSCRIPT Editor environment and show you how to develop

and run a simple iSCRIPT code.

To start iSCRIPT Editor, use the “Start” menu to locate the program. The default

iSCRIPT Editor screen, which opens each time you start the program, is shown in

Figure 4.1.

Figure 4.1. iSCRIPT Editor opening window.

The iSCRIPT Editor opening window is similar to most text-editing or program

development environments. Detail editor commands may be accessed by clicking

“Help” on the menu. However, only the basic command menus required for

creating and editing iSCRIPT codes are presented in this manual. These menu items

are presented below.

 24

 iSCRIPT file operations

 To create a new code file, you can click the new (blank) document

icon or select “File > New” from the menu.

 To open an existing code file, you can click the open file icon or

select “File > Open” from the menu to open a file opening dialog

box. Change the current file directory and select the file you want to

open.

 To save a code file, you can click the save file icon or select

“File > Save” from the menu.

 Operations for running iSCRIPT

 To run iSCRIPT, you can select “Tools > Run Current

Script/Project FIle” from the menu or use the hot key F8.

 To analyze a code, you can select “Tools > Compile/Analyze

Current Script/Project File” from the menu or use the hot key F7.

Note: The “ISCRIPT Analyzer” command outputs detailed information

related to the results of evaluating every line of an iSCRIPT code for

debugging purposes, while “ISCRIPT” command does not provide

detailed output. For this reason, “ISCRIPT” command executes faster

than the Analyzer.

4.2. A Simple iSCRIPT Program: Calculate “2+3”

In this section, we will introduce the steps required to develop a script for an

arithmetic and algebraic problem. We use the simple arithmetic problem “2+3=?”

as our first example. We will write a short iSCRIPT program, which we call

“main,” to solve this problem. The procedure follows the general procedure

outlined for arithmetic and algebraic problems in Section 3.1. The steps involved in

solving this problem are listed below.

4.2.1. Using a Program Structure

1. Open iSCRIPT Editor by selecting the program from the Windows

“Start” menu.

2. Create a new file by selecting “File > New” from the menu and save it

as an “*.isc” file (e.g., math.isc).

Problem 4.1: Calculate “2+3” in iSCRIPT

 25

3. In the first line of the file, type the word “program main.”

4. In line 2, declare a real number variable x by typing “x as real.”

5. In line 3, type the equation “x=2+3.”

6. In line 4, type the word “end program.”

7. Run the program by selecting “Tools > Run Current Script/Project

File” from the menu.

8. After the program is run, the results can be viewed on the screen or in

the file “outputscript.txt” located in the same folder in which you saved

the “math.isc” file.

The complete script is presented in Figure 4.2. You can also find the script file

“math.isc” in the /SampleScripts/Math/Example4.1 subfolder of the iSCRIPT

installation folder.

Figure 4.2. iSCRIPT code for the computation of “2+3” using a program structure.

Let’s take a quick took at the code. The first and last lines define a program that has

the name “main.” The second line declares a real variable “x.” The third line

evaluates the expression “2+3” and assigns the result to “x.” An output statement is

not required since iSCRIPT will automatically output the declared variable.

4.2.2. Without a Program Structure

Follow the same steps as in 4.2.1. However, in the current case, omit steps 3 and 6.

The resulting program should be as shown in Figure 4.3.

 26

Figure 4.3. iSCRIPT code for the computation of “2+3” without a program

structure.

Table 4.1 gives a few sample mathematical expressions and their corresponding

iSCRIPT codes.

Math Expression iSCRIPT Code

 3*15.2 x
x as real

x=(2.5-1)*3.0^0.5

2x

xxxey x

10log)1ln(sin

x,y as real

x=2

y=sin(x)*exp(x)+log(x+1)+log10(x)

5.27.0

3.02.1
A

3.25.12

7.70.5
B

ABC

A(2,2),B(2,2),C(2,2) as real

A=[1.2,-0.3;0.7,2.5]

B=[5.0,7.7;-12.5,-2.3]

C=A*B

Table 4.1. Sample mathematical expressions and their iSCRIPT

equivalents.

 27

4.3. Another Simple Problem: Aircraft Drag Calculation

Let’s consider another simple arithmetic problem, involving aircraft drag calculation.

The problem is described below:

Problem 4.2: Aircraft Drag Calculation

Figure 4.4 Aerodynamics Forces on an Aircraft

In general, the aircraft drag can be computed by

2

2 AV
Cdrag d

 , (4.1)

where

dC = drag coefficient, which is usually determined experimentally, in a wind

tunnel,

 = air density,

V = velocity of aircraft,

A = reference area (the surface area over which the air flows)

Although the drag coefficient is not a constant, it can be assumed to be at low speeds

(less than 200 mph). Suppose the following data were measured in a wind tunnel:

drag 20,000 N
 6101 kg/m

3

V 100 mph

A 1 m
2

Calculate the drag coefficient, then use the computed drag coefficient to predict how

much drag force will be exerted on the aircraft at velocities from 0 to 200 mph.

 28

To solve this problem in iSCRIPT, we need to write a program that computes the drag

coefficient Cd from the wind tunnel data. The drag coefficient is then used to

calculate the drag force on the aircraft at a range of velocities between 0 and 200

mph.

As for the math problem in Section 4.2, the script may be created with a program

structure. In iSCRIPT, the program structure starts with a keyword “program
programname” and ends with a keyword “end program.” The format of the

program is:

program programname

 …

end program

… represents one or more lines of scripting language segments and is

referred to as the body of the program.

The first few lines of the program should consist of the variable declaration. In

iSCRIPT, all of the local variables (with the data type of variable) should be declared

before any executable statements. The format of data declaration in iSCRIPT is:

var1, var2 as type

var1, var2 – variable names satisfying the variable naming convention.

as – declaration keyword

type – may take the values: logical, short, long, real, and double (see

Appendix A.1.1)

After the variable declaration, the input data should be assigned to the variables.

More details about variable names, variable types, and permissible expressions can be

obtained in the iSCRIPT Language Reference in Appendix A.

With the experimental data assigned, the drag coefficient can be calculated by using

Equation 4.1. Let us calculate the drag force on the aircraft for 11 velocities evenly

distributed between 0 and 200 mph. The corresponding drag force results and the

velocities can be stored in two different arrays. Note that iSCRIPT supports array

operations and most of the intrinsic functions directly support vector and matrix

operations. More information on working with arrays is provided in the iSCRIPT

Language Reference in Appendix A.

 29

Figure 4.5. Program outline for problem 4.2.

Figure 4.5 shows the program outline for this problem. You may type this iSCRIPT

code yourself in iSCRIPT Editor and replace the comment statements of steps 1

through 4 with the appropriate scripts.

(Note: In iSCRIPT, any line starting with “#” or “%” is a comment line. Any part of a

line starting with “#” or “%” not within a string quote ‘’ is also a comment.

Comments are not evaluated and are provided only for the convenience of the

modeler to communicate details of the model or script to themselves or others.)

While writing the code, you may need to use the decision structure and loop structure.

iSCRIPT supports decision and loop statements of most popular programming

languages. For example, the most common decision statement, the if statement, can

be used in iSCRIPT as

if (expression) then
 …
else
 …
end if

“…” represents one or more lines of scripting language segment

If expression is true, the first “…” part will be executed. Otherwise, the

second “…” part will be executed

The most common loop statement, the do statement, can be used in iSCRIPT as

do ii = expression1 : expression2
 …

end do

 30

“…” represents one or more lines of scripting language segment.

ii is incremented by 1 and the body of the loop executed until expression1

is greater than expression2.

Other loop and decision structures can be found in the iSCRIPT Language Reference

in Appendix A.

The complete program for Problem 4.2 is shown in Figure 4.6. If you compare this

code with Figure 4.5, you can understand the meaning of each part of the code. The

code can be found in the subfolder /SampleScripts/AircraftDrag/Example4.2 of the

iSCRIPT installation folder.

Figure 4.6. An iSCRIPT program for evaluating the drag on an

aircraft at a range of low speeds.

To run this code, you can carry out the following steps:

1. Open iSCRIPT Editor by selecting the program from the Windows “Start”

menu.

2. Select “File > Open” from the menu.

 The File Open dialog box appears.

3. Navigate to the subfolder /SampleScripts/AircraftDrag of the iSCRIPT

installation folder.

4. Open the file AircraftDrag.isc.

5. Select “Tools > Run Current Script/Project File” from the menu.

6. The results will be shown on the screen when the program is completed.

You can also find the result in outputscript.txt in the same folder as the

script file.

To create this code, you can follow the following procedures in Section 4.2, but type

in the program instructions as shown in Figure 4.6.

 31

1. Open iSCRIPT Editor by selecting the program from the Windows “Start”

menu.

2. Create a new file by selecting “File > New” from the menu and save it as

an “*.isc” file (e.g., AircraftDrag.isc).

3. On the first line of the file, type the word “program main.”

4. On line 2, declare a real number variable x by typing “x as real.”

5. On line 3, type the instructions as shown in Figure 4.5.

6. On line 4, type the word “end program.”

7. Run the program by selecting “Tools > Run Current Script/Project File”

from the menu.

8. After the program is run, the results can be viewed on the screen or in the

file “outputscript.txt,” which is located in the same folder in which you

saved the “AircraftDrag.isc” file.

The results of the calculation are:
Cd 2.0019 X 10

7

V_res (m/s) 0 8.94 17.88 26.82 35.76 44.70 53.64 62.58 71.52 80.46 89.40

Drag_res (N) 0 800 3200 7200 12800 20000 28800 39200 51200 64800 80000

Analysis of the lines of the program

Lines 3 through 6 declare the variables that are used in the program. Accepted

variable types include logical, short, integer, real, and double. An exhaustive list can

be found in the iSCRIPT Language Reference in Appendix A. Also notice that

variables V_res and drag_res are declared as real arrays intended to accommodate 11

real values.

Lines 8 through 11 are called assignment statements. These assign specific values to

the variables.

Line 13 represents the calculation of the drag coefficient.

Lines 15 through 18 represent the calculation of the drag for 11 speeds ranging from

0 to 200 mph. Notice the conversion of the units of speed to SI units (m/s) by

multiplying by the factor 0.4470.

 32

4.4. Another Arithmetic Problem: Circular Cylinder Geometry

We choose the “circular cylinder surface area and volume calculation” problem as

another example to illustrate the use of iSCRIPT for a simple arithmetic problem. In

this problem, we will describe how to use the subroutine and function structures in

iSCRIPT. The problem is described as follows:

We will present a crash course in subroutines and functions in this section, so that we

can use them for the sample calculations being discussed. Please refer to Appendix

A.5.2 through A.5.5 for more details on subroutines and functions in iSCRIPT.

iSCRIPT supports the use of subroutines and functions. In iSCRIPT, a subroutine

may be written as

subroutine subroutinename (arg1, arg2, …, argN)

 variable declaration statements

Problem 4.3: Calculate the Surface Area and Volume of a Circular Cylinder

Figure 4.7. Physical problem and its primary variables.

The equations for calculating the surface area S and volume V of a circular cylinder with

radius r and height h are

 rhrS 22 2 (4.2)

 hrV 2 , (4.3)

where 5r and 10h .

r

h

 33

 …

end subroutine

“…” represents one or more lines of scripting language segments

arg1, arg2, …, argN are the arguments to the subroutine.

variable declaration statements represent variable declaration statements

for the arguments.

A subroutine may be called by

call subroutinename (arg1, arg2, …, argN)

where arg1, arg2, …, argN are the actual arguments to the subroutine.

Similar to a subroutine, a function may be written as

function functionname (arg1, arg2, …, argN)
 variable declaration statements
 …

end function

“…” represents one or more lines of scripting language segment,

arg1, arg2, …, argN are the arguments to the function.

variable declaration statements represent variable declaration statements

for the arguments.

Functions may be called simply by using them in an expression in lieu of a variable.

The statement

var = functionname (arg1, arg2, …, argN)

where arg1, arg2, …, argN are the actual arguments to the function,

assigns the value of the function to the variable “var.”

To solve this problem, it is convenient to create a function (get_area) to calculate the

surface area of the cylinder, and a subroutine (get_volume) to calculate the volume of

 34

cylinder. The complete code is shown in Figure 4.8. The calls to the function

get_area and the subroutine get_volume are in lines 9 and 11 of the main program.

Lines 15 to 24 define the get_area function. Note that the type of the function is

declared on line 17 (get_area as real). This is required when writing a function in

iSCRIPT. Lines 26 to 35 define the get_volume subroutine. Note that the return value

of (volume) must be an argument of the subroutine. This value will be computed

when the program is executed and the computed value will be returned to the main

program.

Note:

 For the subroutine/function, the names of the dummy arguments and the

actual arguments do not have to be same, but they are required to have the

same type.

 In iSCRIPT, at runtime, the values of the actual arguments, if modified within

the subroutine, are returned to the calling program or subprogram.

 After control is returned to the calling routine, the local variables in the

subroutine or function are automatically freed.

Figure 4.8. iSCRIPT program for evaluating the cylinder geometry.

This code can be found in the subfolder /SampleScripts/CircularCylinder/Example4.3

of the iSCRIPT installation folder. Follow these steps to run the code:

 35

Step 1. Open iSCRIPT Editor.

Step 2. Select “File > Open” from the menu.

 The File Open dialog box appears.

Step 3. Navigate to the subfolder

/SampleScripts/CircularCylinder/Example4.3 of the iSCRIPT installation

folder.

Step 4. Open the file CircularCylinder.isc.

Step 5. Select “Tools > Run Current Script/Project File” from the menu.

The results for the surface area and volume are 471.2389 and 785.3982, respectively.

 36

5. Engineering Component Modeling in

iSCRIPT

In this chapter, we present the component modeling technique in iSCRIPT. Examples

are given to show the procedure for creating and executing engineering component

modeling mode in iSCRIPT. The procedure for developing an iSCRIPT solution in

several script files is also presented.

5.1. Component Modeling in iSCRIPT

iSCRIPT has features that allow you to define components and the variables

associated with the components. These variables will have an engineering context

including limits (constraints), as well as engineering units, where appropriate. To

complete the modeling of a component, a component subprogram must be written

that contains the equations to model the component. The model equations for a

component can be evaluated with the statement Component.Execute.

In iSCRIPT, a component is declared by using a CreateComponent statement. All

components of a system must be declared in the main program.

CreateComponent (component_name [,description])

Note: Segments enclosed in square brackets are optional and may be

omitted.

component_name – A name for the component (a string limited to

24 characters). Two components may not have the same

name. Component names obey the same formation rule

as those for variables.

description – A description for the component (a string limited to 50

characters). Optional.

After the component is declared, variables can be attached to this component by using

a CreateVariable statement.

CreateVariable (component_name, variable_name [,type]
[,dimension] [,size] [,upper_bound] [,lower_bound]
[,default_value] [,unit])

Note: Segments enclosed in square brackets are optional and may be

 37

omitted.

component_name – The component to which the variable belongs (a

string limited to 24 characters). Two component

variables may not have the same name. Component

variable names obey the same formation rule as those

for variables.

variable_name – A name for the variable (a string limited to 24

characters). Two components may not have the same

name. Component names obey the same formation

rule as those for variables.

type – A string accepting values such as “integer,” “real,”

“double.” A complete list of variable types can be

found in Appendix A.1. This argument is optional.

When not provided, component variables are

assumed to be double values.

dimension – Variable dimension for an array variable (integer).

For example, a 2D matrix will have a dimension of 2.

This argument is optional for scalar variables

(dimension = 0 is default).

size – Size for an array variable. This argument accepts a

group of integers in a bracket separated by a

semicolon “;” with a limit of five integers. For

example, a 3 x 3 matrix will have a size of (3;3). This

input is required when dimension > 0.

upper_bound – An upper bound for the variable (all the variables for

an array variable). This argument is optional.

lower_bound – A lower bound for the variable (all the variables for

an array variable). This argument is optional.

default_value – A default value for the variable (all the variables for

an array variable). This argument is optional.

unit – A string representing the engineering unit for the

variable (e.g. m/s). This argument is optional and is

should be limited to 20 characters, if provided.

A component may have several variables. A component variable can be referenced by

using:

 38

ComponentName.VariableName

Example:

Cylinder.radius = 5

Cylinder.height = 10

Cylinder.Area = 2*pi*(Cylinder.radius+Cylinder.height)

A component variable can be used and its value can be changed in any program,

subprogram, or component.

Each component must have a unique subroutine that has the same name as the

component name. The component subroutine requires no argument. This subroutine is

automatically executed once the Execute command is called:

Component_Name.Execute

or

Call Component_Name.Execute

The component may also be optimized by using the Optimize command as follows:

With the above statements, iSCRIPT provides a component modeling method for the

design and optimization of a complicated system. A large system can be decomposed

into several components and each component is modeled in its own executable

subprogram. We will give an example in the next section to illustrate how to use this

component modeling technique to solve a real problem.

Component_Name.Optimize

or

Call Component_Name.Optimize

 39

5.2. Creating Subsystems and Systems in iSCRIPT

Conceptually, subsystems have the same data structure and properties as components.

They include variables at the subsystem level similar to component variables. The

subsystem variables are variables at the subsystem level that cannot be isolated within

any of the components. For instance, in an airframe subsystem consisting of

components including, say, a fuselage, wind, tail, and ailerons, the total surface area

as a variable would be a subsystem variable. On the other hand, the wing span, sweep

angle and thickness would be the wing component’s variables and the fuselage length

and diameter would be the fuselage component’s variables. Subsystems are also

declared using the CreateComponent command, and subsystem variables are also

declared using the CreateVariable command. The way subsystems differ from

components is that they have other components associated within them. The

association is indicated using the AddSubComponent command. However, this

formal association is only necessary for optimization tasks (Chapter 6 and Problem

6.2 of Section 6.3). The mere evaluation of the subsystem model consisting of the

evaluation of its component models is sufficient for the performance analysis of the

subsystem (see Figure 5.12 of Section 5.6).

Systems do not need to be declared in iSCRIPT. By default, each iSCRIPT project is

considered to be a system. All subsystems (and their components) declared in a

specific project are therefore assumed to belong to the system. Problem 5.3 illustrates

the relationship between components, subsystems, and systems in iSCRIPT.

5.3. Solving a Problem Using Component Modeling or Decomposition

Method

We still use the “circular cylinder surface area and volume calculation” problem of

Section 4.4 to illustrate the procedure. We will now solve that same problem using

the component method.

For this problem, we define a single component Cylinder, which has four component

variables: radius, height, surface_area, and volume. The detailed procedure to solve

the problem follows the general procedure in Section 3.2. The steps are as follows:

Step 1. Open iSCRIPT Editor.

Step 2. Create a new file and save it as an “*.isc” file.

Step 3. Type the words “program main” and “end program” to create a main

program. In the body of the main program:

a. declare the Cylinder component by using CreateComponent
statement

Problem 5.1: Solve Problem 4.4 Using the Component Technique in iSCRIPT

 40

b. declare the four component variables (radius, height, surface_area,

volume) of the Cylinder system using CreateVariable statement

c. assign the input values for Cylinder.radius and Cylinder.height

d. type “Cylinder.Execute” to evaluate the component.

Step 4. After the main program is written, type the words “subroutine
Cylinder()” and “end subroutine” to create the system subroutines for

the Cylinder system. In the body of the subroutine:

a. type in the equations to calculate the surface area and volume.

Step 5. Save the file.

Step 6. Select “Tools > Run Current Script/Project File” from the menu to run

the iSCRIPT code.

Step 7. Find the solution on the screen or in the file “outputscript.txt.”

The first part of the main program should consist of the component declaration of the

Cylinder component using a CreateComponent statement, and the declaration of its

four component variables using a CreateVariable statement. Then, the cylinder

radius and height should be assigned. The Cylinder component may be executed to

calculate the surface area and volume by using Cylinder.Execute. Beside the main

program, an executable subroutine, which has the same name “Cylinder,” should be

created for the “Cylinder component” to compute the surface area and volume.

Figure 5.1 shows the program outline for this problem. You may replace the comment

statements of steps 1 through 5 with your own iSCRIPT code segment to complete

the program. A sample completed program is shown in Figure 5.2.

Figure 5.1. Program outline for Problem 5.1.

We will now compare the script in Figure 5.2 with the program outline in Figure 5.1.

Line 4 is the statement used to create the component, and Lines 5 through 8 describe

the variables of the component. Note that here we have used only three parameters

with the CreateVariable statment: component name, variable name, and variable

type. We chose to not supply other additional, optional properties of the variables,

 41

including providing a default value, setting limits or constraints on the variables, or

providing an engineering unit. The default value in this case will be automatically set

to be zero. In later problems, we will demonstrate how to use those properties of the

iSCRIPT component variable.

Figure 5.2. iSCRIPT program for Problem 5.1.

Line 13 contains a statement to evaluate the component.

Lines 17 through 26 represent the actual model of the component implemented as a

subroutine with the same name as the component. This subroutine includes statements

implementing the equations to compute the surface area and volume. Note the way in

which component variables are used, compared to the procedure for Problem 4.3 in

Section 4.4.

The script file can be found in the subfolder /SampleScripts/

CircularCylinder/Example5.1 of the iSCRIPT installation folder. If the program is

run, the same result as in Problem 4.3 will be obtained.

5.4. Writing a Program in Several Script Files

iSCRIPT allows you to write a program in several files. Actually, this is highly

recommended when the program contains several components. This will make the

program more portable and easy to manage in a shared project environment. In

addition, a component file can easily be re-used or shared by other systems that have

the same component. It is also easy to add new components to the current system or

 42

modify the available components since the program structure matches the engineering

decomposition (physical, conceptual, or disciplinary) of the system.

To link all the script files to a project, the user must write a single project file (*.ipr),

which records the name and path information of all the script files. The project file

must start with a keyword “Project” in the first line and each line can only contain the

one script file name, while the path of each script file must be included with the file

names (if all of the files are not in the same folder as the project file). Figure 5.3

shows an example of a project file. Note that the subfolders “PS”, “OLS”, “CHS”,

“ECS”, VCPAOS”, “FLS”, and “AFS” are subfolders of the project file ata.ipr.

Figure 5.3. An example of a project file.

To run a problem with a project file, simply open the project file and select “Tool >

ISCRIPT” from the menu to run the whole project.

Note:

 In a project, there must be a program in a script file which will be the starting

point of the program execution.

 If a script file is in the same folder as the project file, the directory or path

information may be neglected (e.g., “main.isc” in Figure 5.3).

 The order of the script files is not important.

5.5. An Example of a Program Developed in Several Script Files

Here again, we use the Circular Cylinder problem as an example.

The code developed in Problem 4.3 has one main program, one function, and one

subroutine. These three program structures can each be written in a separate file.

Thus, together with a project file, this project will now be written in 4 files. These file

are listed in Figures 5.4 through 5.7.

Problem 5.2: Solve Problem 4.3 Using Several iSCRIPT Files

 43

Figure 5.4. Project file Cylinder.ipr for Problem 5.2.

Figure 5.5. Script file Cylinder.isc for Problem 5.2.

Figure 5.6. Script file Area.isc for Problem 5.2.

Figure 5.7. Script file Volume.isc for Problem 5.2.

The code can be found in the subfolder /SampleScripts /CircularCylinder/Example5.2

of the iSCRIPT installation folder. Follow the procedures below to run this code:

 Open iSCRIPT Editor.

 44

 Select “File > Open” from the menu.

 The File Open dialog box appears.

 Navigate to the subfolder /SampleScripts/CircularCylinder/Example5.2 of

the iSCRIPT installation folder.

 Open the file Cylinder.ipr.

 Select “Tools > Run Current Script/Project File” from the menu.

If the program is run, same result will be obtained as in Problem 4.3.

5.6. An Example of a System with Several Components

We will use a heat rejection system to illustrate performance analysis of a system

with several components.

Problem 5.3: Calculating the Cost of a Heat Rejection System

The system is illustrated in Figure 5.8.

Turbine

w kg/s

A m2

t oC

Condenser

Cooling

Tower

Turbine

w kg/s

A m2

t oC

Condenser

Cooling

Tower

Figure 5.8. Cooling tower, pump, and condenser system of a heat rejection system.

The objective is to evaluate the initial plus operating costs of the system. The heat-

rejection rate from the condenser is provided as 14MW. The following costs in

dollars are included in the problem description:

 Initial cost of cooling tower, 800A0.6
, where A = area, m

2

 Lifetime pumping cost, 0.0005w3
, where w = flow rate of water, kg/s

 Lifetime penalty in power production due to elevation of temperature in

cooling water, 270t, where t = temperature of water entering the condenser,
o
C.

 The rate of heat transfer from the cooling tower can be represented adequately

by the expression q = 3.7w1.2tA (W).

Assume A=170 m
2
 and w=200 kg/s. What is the total cost of the system?

 45

The heat rejection system can be physically decomposed into three components:

cooling tower, pump, and condenser, as illustrated in Figure 5.8. Note that in a

detailed model, each of the components may be subsystems comprised of other

components.

Figure 5.9. Decomposition of the system.

By virtue of the physical decomposition strategy adopted, the total cost Csys can be

represented as

 condenserpumptowersys CCCC . (5.1)

For the cooling tower, the cost is

6.0800ACtower . (5.2)

For the pump, the cost is

30005.0 wC pump . (5.3)

For the condenser, the cost is

tCcondenser 270 . (5.4)

The unknown variable t is calculated by the energy balance between the condenser

and cooling tower:

condensertower QQ (5.5)

tAwQtower

2.17.3 . (5.6)

This problem assumes that the temperature of the water leaving the cooling tower is

equal to the temperature of the water entering the condenser (i.e., there is no

temperature change in the pump).

Heat Rejection

System

Cooling Tower

Component

Pump

Component

Condenser

Component

 46

 condensertower tt (5.7)

The iSCRIPT code modeling the above system is developed to be consistent with

the decomposition procedure adopted for the design. The variables used for the

system and each of the subsystems are summarized in Table 5.1 below.

System Variable Remarks
Heat Rejection

System

Csys The total cost of the heat rejection system

w Flow rate of cooling water (kg/s)

Components Variable
Tower Ctower First cost of cooling tower

A Area of cooling tower (m
2
)

Qtower Heat rejection rate of the cooling tower (W)

tout Temperature of water leaving the cooling tower (°C)

Pump Cpump Life time pumping cost

Condenser Ccondenser Life time penalty in power production due to elevation of

temperature of cooling water

Qcondenser Heat absorption rate of the condenser (W)

tin Temperature of water entering the condenser (°C)

Table 5.1. Components and variables of the heat rejection system.

The development of the iSCRIPT code follows the general procedures in Section 3.2.

The outline of the script program is shown in Figure 5.10. The problem has one

system, HR_sys, and three components: Tower, Pump, and Condenser. Both the

system and the components, and their variables, need to be declared. Each component

must be simulated in its own component subroutine. The component and component

variable declaration are done in the main program.

 47

Figure 5.10. Program outline for Problem 5.5.

The complete code is written in six files (project file, main program file, HR_sys

system file, Tower component file, Pump component file, and Condenser component

file), and are shown in Figures 5.11 through 5.16.

Figure 5.11. The project file for Problem 5.5.

 48

Figure 5.12. The main program for Problem 5.5.

In the main program, the upper bound, lower bound, and default values of the

component variables are set during the component variable declaration by using

CreateComponent statement. These values are summarized in Table 5.2 below.

System and

Component
Variable

Upper

Bound

Lower

Bound

Default

Value
Remarks

Heat Rejection

System

Csys 1.0E9 0 0 1. The upper bound and lower bound of

a design variable is selected to fit the

design constraints.

2. The default value can be assigned

during the variable declaration to

avoid extra input value assignments in

the body of the program

3. The upper and lower bounds of

unconstraint variables can be set to be

large or smaller enough so that the

variables can never reach the

constraints.

w 500.0 10.0 220.0

Tower

Ctower 1.0E9 0 0

A 500.0 10.0 105.0

Qtower 1.0E9 0 0

tout 500 0 0

Pump Cpump 1.0E9 0 0

Condenser

Ccondenser 1.0E9 0 0

Qcondenser 10E9 0 0

tin 500 0 0

Table 5.2. The upper bound, lower bound, and default values provided for the

component variables in Problem 5.5.

 49

Figure 5.13. The subsystem program for Problem 5.5.

Figure 5.14. The tower component evaluation program for Problem 5.5.

Figure 5.15. The pump component evaluation program for Problem 5.5.

Figure 5.16. The condenser component evaluation program for Problem 5.5.

The code can be found in the subfolder /SampleScripts/HeatRejection/Example5.3 of

the iSCRIPT installation folder. Follow the steps below to run this code:

1. Open iSCRIPT Editor.

2. Select “File > Open” from the menu.

 50

 The File Open dialog box appears.

3. Navigate to the subfolder /SampleScripts/HeatRejection/Example5.3 of the

iSCRIPT installation folder.

4. Open the file HeatRejection.ipr.

5. Select “Tools > Run Current Script/Project File” from the menu.

The result obtained is $31,846.19 for the total cost of the system.

 51

6. Optimization in iSCRIPT

In this chapter, we introduce the optimization procedure in iSCRIPT. Two examples

will be given to illustrate system optimization.

6.1. Optimization Based on Component Modeling

iSCRIPT’s built-in optimization procedure is based on the decomposition of systems

into components. iSCRIPT can optimize a single component or a large system

containing several subsystems or components by using the integrated local global

optimization (ILGO) technique. In its most basic form, every iSCRIPT optimization

job must consist of one system and at least one subsystem consisting of at least one

component. (By inference, the system-subsystem-component hierarchy for the most

basic job is then represented by one component which is also the subsystem, which is

the system.)

To optimize a component or subsystem, we must indicate the variable that should be

maximized or minimized. This variable is termed the “objective variable” and is

indicated by using the AddObjective statement. The details of this statement are as

follows:

AddObjective (component, variable [,maxmin])

Note: Segments enclosed in square brackets are optional and may be

omitted.

component -- The component to be optimized (a string limited

to 24 characters). This component must be a

component previously declared with the

CreateComponent command.

variable -- Name of the objective variable (a string limited to

24 characters). This variable must be a variable

previously declared for this component using the

CreateVariable command.

maxmin -- 0 or 1. Indicates whether this is a minimization or

maximization objective. Use 0 to minimize and 1

to obtain a maximum. This argument is optional.

The default value is 0.

 52

After the objective variable has been indicated, we also need to indicate which

variables are free for optimization. These are the variables whose values can be varied

in order to obtain the optimum value of the objective function. The variables are

referred to as optimization or decision variables and are indicated by the

AddVarObjective statement. The details of this statement are as follows:

AddVarObjective (component, variable [,delta])

Note: Segments enclosed in square brackets are optional and may be

omitted.

component -- The component to which the variable belongs (a

string limited to 24 characters). This component

must be the component that will be optimized, or

a subcomponent of it (see Section B.2.6). This

component must be a component previously

declared with the CreateComponent command.

variable -- Name of the variable (a string limited to 24

characters). This variable must be a variable

previously declared for this component using the

CreateVariable command.

delta -- This parameter further narrows the optimization

search space for the optimization variable. If the

optimization variable x were defined by

CreateVariable to have the lower and upper

bounds L and M, respectively, then MLx , ,

and the size of the search space is M – L. The

parameter, , will narrow this space to from [L,

M] to),(),,(ii xMMINxLMAX , where

xi is the default value of x, a computed initial

value for x, or the value of x after a prior

optimization step. This parameter may be used to

further reduce the search space after a prior

optimization step (or after an initial computation

designed to obtain a good initial estimate

narrowing the range of the optimum value of x) to

speed up the optimization process.

 53

Note:

 The objective and optimization variable are previously-declared component

variables.

 There can be more than one optimization variable. Note that the fewer

optimization variables there are, the faster the optimization will complete.

Also, the smaller the search space of the optimization variable, the faster the

optimization will complete.

After both the objective variable and the optimization variables are declared by

AddObjective and AddVarObjective statements, the optimization calculation is

executed by using the statement

Component.Optimize

6.2. Optimization of a System with a Single Component

Let us continue to use the Circular Cylinder problem for the example. The model

used for the components of the system are very rudimentary, but serve to illustrate

how iSCRIPT can be used to model engineering systems. The problem is revised as

follows:

The procedures required to solve this problem follow the general procedure presented

in Section 3.3. The steps are as follows:

Step 1. Open iSCRIPT Editor.

Step 2. Create a new file and save it as an “*.isc” file.

Step 3. Type the words “program main” and “end program” to create a main

program. In the body of the main program:

a. declare the Cylinder system by using CreateComponent statement

b. declare the four component variables (radius, height, surface_area,

volume) of the Cylinder system using CreateVariable statement

c. assign the input value for Cylinder.volume.

e. declare the objective variable Cylinder.surface_area by using

AddObjective statement

f. declare the optimization variable Cylinder.radius by using

AddVarObjective statement

g. type “Cylinder.Optimize” to optimize the overall system.

Problem 6.1: Minimize the Surface Area of a Circular Cylinder with a Fixed Value

of Volume of 800 m
3
.

 54

Step 4. After the main program is written, type the words “subroutine
Cylinder()” and “end subroutine” to create the system subroutines for

the Cylinder component. In the body of the subroutine:

a. type the equations for the height and surface_area.

Step 5. Save the file.

Step 6. Select “Tools > Run Current Script/Project File” from the menu to run

the iSCRIPT code.

Step 7. View the output on screen or in the file “outputscript.txt.”

Note that the only input variable for this problem is the volume. The task is to

determine values of the other variables (r and h) that minimize the surface area of the

model (cylinder). These (decision) variables do not require input values. The

objective variable is the surface_area and the optimization variable is the radius. The

height is a dependent variable computed from the volume and radius.

In the main program, the Cylinder component and its four component variables are

declared first. The input values are then assigned, followed by the declaration of the

objective and optimization variables. The last part of the main program is the

optimization calculation.

In the Cylinder component model, the height of the cylinder is computed from the

volume and the radius. Then the value of the objective variable surface_area is

calculated. Figure 6.1 shows the program outline for this problem.

Figure 6.1. Program outline for Problem 6.1.

The complete code is shown in Figure 6.2. If you compare it with the code in Figure

6.1, the meaning of each statement is obvious.

 55

Note:

 The genetic algorithm in iSCRIPT will be used for the optimization

procedure. Details of the genetic algorithm are provided in Appendix B.2.10.

 Since the optimization includes a search process with many iteration steps,

both the objective variable and optimization variable must be set with a

reasonable upper bound and lower bound (constrained). This is done in the

component variable declaration statement.

 The speed and accuracy of the optimization will be increased if the range of

the optimization variable is small and its default value is close to optimum

value. (Care must be taken to ensure that the optimum value lies inside the

constraint or domain of the optimization variable. Simply making the domain

large enough will take care of this requirement. For instance, specifying a

radius that lies within the range of 0 to 100 is a safe range within which the

optimum radius will lie.)

Figure 6.2. The complete code for Problem 6.1.

 56

The code can be found in the subfolder /SampleScripts/CircularCylinderExample6.1

of the iSCRIPT installation folder. Follow these steps to run this code:

1. Open iSCRIPT Editor

2. Select “File > Open” from the menu.

 The File Open dialog box appears.

3. Navigate to the subfolder /SampleScripts/CircularCylinder/Example6.1 of

the iSCRIPT installation folder.

4. Open the file CircularCylinder.isc.

5. Select “Tools > Run Current Script/Project File” from the menu.

The code returns the values of the minimized surface area and the corresponding

cylinder radius as 477.06172 and 5.030, respectively. Note that due to the fact that a

genetic algorithm is used, the results may change slightly with each execution. Also,

note that default values of the optimization parameters in iSCRIPT have been used

(which is why no parameters are specified). These defaults are usually acceptable for

most problems. Details of the parameters are given in Appendix B.2.11.

The analytic results can be derived by differentiating the following equation and

setting the value to zero to derive the optimum.

2
22

r

V
rrhrS

 (6.1)

For this problem, the analytical results are 0308.5
2

3

V
r and

 0617.47723
3/13/2 VS , respectively.

Although the analytic results are easily obtained, note the speed of the genetic (GA)

optimization procedure used by iSCRIPT in calculating the results and the accuracy

of the results. Conventional wisdom would claim that GA procedures are robust but

take significantly longer to converge or compute the optimum of continuous functions

compared with gradient-based methods. However, the unique GA procedure in

iSCRIPT has been tuned to perform exceptionally well, even for continuous

functions, while retaining the robustness expected of a GA procedure.

6.3. Optimization of a System with Multiple Components

Let us now consider a problem that contains more than one component. The heat-

rejection system design problem in Problem 5.3 is used.

Problem 6.2: Minimize the Cost of the Heat Rejection System in Problem 5.3

 57

The objective variable of the problem is the total cost Csys of the Heat Rejection

System. There are two optimization variables: flow rate of water, w, of the Heat

Rejection System and the area, A, of the Cooling Tower component. The objective

function of this problem may be expressed as

 AwfCsys , . (6.2)

The goal is to seek the optimum values of w and A that will minimize Csys.

Note that in this problem, we have two optimization variables and they belong to

different components. Therefore, we need to indicate the relationship between the

Heat Rejection System and the Cooling Tower component. This is done by indicating

which components belong to each subsystem. In a multi-subsystem environment,

several subsystems may be present in the entire system, and the subsystem

composition must be indicated. Otherwise, it would be impossible to determine which

component belongs to which subsystem. In the current example, there is only one

subsystem, thus this is also the system. The subsystem composition is indicated using

the AddSubComponent command.

The component-subsystem-system relationship in iSCRIPT is summarized below:

 Every iSCRIPT project is assumed to contain one system (a system is

automatically created per project)

 All subsystems in a project automatically belong to the system. If there is

only one subsystem, then this subsystem comprises the system.

 The component-subsystem relationship or hierarchy is formalized using the

AddSubComponent command.

The format for the AddSubComponent command is shown below:

The goal of the problem is to find the optimum value of A and w that will minimize

the total cost C.

AddSubsystem (component, subcomponent)

component -- The component consisting of other components or

subsystem (a string limited to 24 characters). This

component must be a component previously

declared with the CreateComponent command.

subcomponent -- A component to be identified as a subcomponent of

a component. This component must be a

component previously declared with the

CreateComponent command.

 58

Figure 6.3. Program outline for Problem 6.2.

The program outline is shown in Figure 6.3 above. Compared with Problem 5.3, we

only need to make the following changes in the main program:

 Indicate the objective variables using AddObjective.
 Indicate the optimization variables using AddVarObjective.
 Start the optimization calculation using HR_sys.Optimize.

 59

Figure 6.4. The main program for Problem 6.2.

Figure 6.4 is the complete code for the main program. Since all of the other files are

the same as those in Problem 5.3 (component models are portable from solution to

solution), only the main program file is provided here.

Note the keywords Global.maxPopulation, Global.maxInitialEvaluations,
Global.maxGenerations, Global optconvergencelimit, Global,mutationfreq,
sampsizepervariable, and Global.maxILGOsteps are the parameters to control the

performance (speed and accuracy) of the GA optimization calculation. The default

values are usually sufficient to solve most problems. The default values are provided

in the iSCRIPT Optimization Reference in Appendix B.2.11. However, in the above

program, we have modified these defaults to obtain results faster. Detailed

information of these parameters can also be found in Appendix B.2.11.

 60

The scripts solving this problem can be found in the subfolder

/SampleScripts/HeatRejection/Example6.2 of the iSCRIPT installation folder. Follow

these steps to run the code:

1. Open iSCRIPT Editor.

2. Select “File > Open” from the menu.

 The File Open dialog box appears.

3. Navigate to the subfolder /SampleScripts/HeatRejection/Example6.2 of the

iSCRIPT installation folder.

4. Open the file HeatRejection.ipr.

5. Select “Tools > Run Current Script/Project File” from the menu.

The optimization calculation requires a few seconds to run. The final result is

contained in the file outputscript.txt. The results are compared with those from

Stoecker [5] in Table 6.1 below.

 A w Csys

Stoecker 202.6 167.9 53812.6

iSCRIPT 202.52 167.95 53829.6

Table 6.1. Comparison of iSCRIPT optimization results for Problem 6.2 with those

from Stoecker [5].

Details of the optimization process are contained in the file optimize.txt. The details

include the initial values of the optimization variables and the objective function, the

various realizations of the system, the array of viable systems or realizations

(population of individuals in genetic algorithm parlance) by generation or as the

optimization progresses, and the final results. A sample optimize.txt file is illustrated

in Figure 6.5 below.

 61

Figure 6.5. Sample optimize.txt output file.

The sample problem described in this section is a simple one. In this problem, the

overall objective function can be expressed as a single equation,

Aw
wAAwfCsys 2.1

6
36.0

7.3

1014
270005.0800, . (6.3)

Therefore, the advantages of decomposition may not be apparent. On the other hand,

a realistic industrial design/optimization problem could contain many components

and a large number of variables. A system may contain several subsystems and the

coupling between these subsystems may be complicated. iSCRIPT’s decomposition-

based modeling approach and ILGO optimization algorithm provide a way to handle

these kinds of complicated system design and optimization problems.

 62

7. Running iSCRIPT in Parallel

iSCRIPT can execute programs automatically in a parallel environment (without the user

actually parallelizing their codes). However, currently, only the optimization portion of a

program actually executes in parallel. Optimization commands are computationally

intensive for fairly sized system models. As a result, executing them in parallel provides

significant reduction in the time to obtain solutions. For instance, a program named

ADVISOR, implemented in MATLAB, which simulates in-detail the model for an

automobile drive train system, is reported to take about 25 seconds to run on a fairly

sized PC. Optimizing such a program (which is doubtlessly a mixed integer non-linear, or

MINL, problem) may require up to 40,000 evaluations of the model. This would result in

a total time of about 11 days to obtain results. In a parallel environment, using 12

processors, results may be obtained in as quickly as 24 hours.

Any iSCRIPT program that can run on a single-processor computer can execute in

parallel in a multi-processor environment. However, currently, only the optimization

portion of the program gains from the parallel environment. This means that programs

without any optimization calls will simply execute multiply on all the processors.

The system requirement for running iSCRIPT in parallel is described in the next section

while procedures for running iSCRIPT programs in parallel is described in Section 6.2.

7.1. System Requirements

The iSCRIPT executable imparted with automatic parallel features and algorithm is

named iscript_mp.exe. This program must be run on a computer (or network of

computers) on which MPI has been set up. The complete requirements are as follows:

 iSCRIPT parallel executable (iscript_mp.exe, which is available from an iSCRIPT

installation).

 Computer or network of computers on which MPI has been set up. Ideally, this

should be a multi-processor environment, but MPI is also able to work on a

single-processor installation, spawning virtual processes simulating a multi-

processor environment.

 Each computer (or the single computer simulating a parallel environment) should

be at least a Pentium PC running at a speed of at least 1GHz, with at least 128MB

ram and 200MB free disk space.

7.2. Running an iSCRIPT Program in Parallel

The syntax for running an iSCRIPT program in parallel is as follows:

 63

mpirun –np # iscript_mp.exe

or

mpirun –np # iscript_mp.exe program.isc

or

mpirun –np # iscript_mp.exe program.ipr

In the above syntax,

 # is the required number of processors.

 program.isc is any iSCRIPT program file.

 program.ipr is any iSCRIPT project file.

 If the first syntax is used, the iSCRIPT parallel program will initially (interactively)

query the user for the script or project that the user wishes to execute in parallel.

7.3. A Sample Optimization Problem Run in Parallel

Any iSCRIPT program that can run on a single processor computer can execute in

parallel in a multi-processor environment. This example illustrates the use of iSCRIPT in

optimizing a problem in parallel.

This sample problem file contains a main program and a subroutine that evaluates a

model. The model is the Rastrigin equation, shown in Equation 6.1 below.

)2cos2(cos1020)(21

2

2

2

1 xxxxxf (6.1)

Figure 6.1. Plot of the Rastrigin function.

Global minimum

 64

This function has several local minima, making it difficult for a gradient-based procedure

to capture the actual minimum without the benefit of a good starting or guess value. The

actual minimum value is 0 and occurs at the values of (x1, x2) = (0,0).

Figure 6.2 below shows the iSCRIPT program for finding the optimum of the Rastrigin

function.

Figure 6.2. iSCRIPT program for finding the optimum of the Rastrigin function.

The program is created in a single file (rastrigin.isc) with the following parts:

Main Program

The main program starts on Line 3 with the statement “program main” and ends on line

31.

 65

The first part of the main program (Lines 9 through 12) indicates a component with three

variables, x1, x2, and y. This problem is considered to be a system consisted of one

subsystem with a single component.

This part of the program also identifies y as the objective function and (x1, x2) as

variables to be optimized in achieving the minimum value of the objective function

(Lines 14 through 17).

The second part of the program sets the optimization parameters (Lines 22-27) and

optimizes the component (Line 29).

Component Model

The function (or component) is modeled in subroutine Rastrigin (Lines 34 through 41).

Variables are declared and initialized in Lines 33 through 39 of the program.

Equation 6.1 is implemented in Line 41 of the program.

Output

Again, the output file is outputscript.txt. The correct results were obtained in about 2.9

seconds on a Pentium workstation using only a population of 70 realizations.

Details of the optimization process are recorded in the file optimize.txt. These details

include the initial values of the objective variable and the optimization variables, the

various realizations of the system being evaluated, the array of viable systems or

realizations (population of individuals in genetic algorithm parlance) by generation or as

the optimization progresses, and the final results. A sample optimize.txt file is illustrated

in Figure 6.3 below.

Figure 6.3. Sample optimize.txt output file.

 66

8. Interface with Other Software

8.1. Purpose

iSCRIPT provides several methods for interfacing with other third-party software.

This is extremely important in providing functionality as a system-of-systems tool for

engineers. The methods in iSCRIPT for interfacing with other software include:

1. Open a process and execute the third-party executable directly. This method is

universal and works for any third-party software, as long as the software can be

opened from a shell or the command line.

2. Provide direct interface to specific software include Microsoft Excel, TTC

Technologies’ INSTED software programs and Database, and TTC Technologies’

AEROFLO multi-disciplinary CFD program.

3. Providing the syntax support necessary to run scripts developed in other

environments (such as MATLAB) directly in iSCRIPT with minimum

modification.

The procedures for executing a third-party executable are described in the next

section.

8.2. Running a Third-Party Software or Executable

An external or third-party executable may be activated in iSCRIPT as if from a

command line using the execute command. The syntax is shown below.

call execute (‘executable_filename’, [‘commandline_argument’])

or

iresult = execute (‘executable_filename’, [‘commandline_argument’])

The above rules govern the process of calling the open command.

 executable_filename is a string representing the executable file. The string

may include the path if the file is not in the iSCRIPT working directory at the

time of the call (see Section 7.3). The filename must be enclosed in single

quotes.

 commandline_argument is an optional string containing arguments that

should be passed to the executable at runtime.

 The execute command may be used to run any executable at runtime, including

Microsoft Excel, other CFD programs, and MATLAB (using MATLAB’s

component compile (MCC) tool).

 67

 Combining the ability to run an external executable with the input/output

procedures in Section 4.8 allows iSCRIPT to write input files for an external

program, run the program, and read the output. This allows engineering models

implemented in other environments to easily be integrated with an iSCRIPT

solution. See sample problem 17 for an example solution integrating an aircraft

engine model program written in MATLAB.

8.3. Setting/Changing the Working Directory

iSCRIPT provides commands for changing the execution directory in case a third-

party executable does not reside in the same folder as an iSCRIPT program that

wishes to run the executable. The syntax to accomplish this is:

call changedirectory ([‘path’])

or

ivar = changedirectory ([‘path’])

The above rules govern the process of calling the changedirectory command.

 path is a string representing the directory to change to. When not provided, the

command reverts to the executing iSCRIPT directory (See sample problem 18).

Path must be enclosed in single quotes.

 The output of the changedirectory command is 1 if successful and 0 if an error

occurred.

8.4. Determining the Working Directory

To determine the current directory (at iSCRIPT runtime), iSCRIPT has provided the

keyword currentdirectory. When used with the write statements (Section 4.8), the

current working directory is printed. See sample problem 18 which is described in the

appendix.

8.5. Example of Running a MATLAB script

A short MATLAB script that uses some of the matrix manipulation commands in

MATLAB is used to the extent to which iSCRIPT can execute MATLAB programs.

Model

xyxbxyz

b ,y ,x

/2

115

212

014

211

121

112

987

664

324

 68

8.5.1 Running the MATLAB script

The MATLAB script is shown below.

x = [4, 2, 3; 4, 6, 6; 7, 8, 9];

y = [2, 1, 1; 1, 2, 1; 1, 1, 2];

b = [4 1 0; 2 1 2; 5 1 1];

z = y*x + b*x + 2*y/x

%z = 2*y/x;

a = x + 2 * sin(y)

Note that Lines 4 and 6 have the ending “;” removed so that MATLAB would print

an output to screen. The file containing this script is matlaba70.m in the subfolder

/SampleScripts/MATLABprograms of the iSCRIPT installation folder. There are two

ways to run this script in MATLAB:

1. Method 1

 Open the MATLAB program.

 Simply copy and paste the above script (or from the open matlaba70.m file)

into the MATLAB command window.

 The output values of the matrix z and are printed out.

2. Method 2

 Open the MATLAB program

 Set the Current Directory to the /SampleScripts/MATLABprograms

subfolder of the iSCRIPT installation folder as shown in Figure 7.1.

 Type matlaba70 in the MATLAB command window.

 The output values of the matrix z and are printed out.

 69

Figure 7.1. MATLAB program showing results of running matlaba70.m script file.

8.5.2 Running the program in iSCRIPT

The iSCRIPT version of the same program is presented below. Notice that the script

is exactly the same, except that the variables used are declared at the start of the

program. This is the most prominent modification that has to be made to MATLAB

scripts to run them in iSCRIPT.

i,x(3,3),y(3,3),b(3,3) as integer

z(3,3),a(3,3) as real

x = [4, 2, 3; 4, 6, 6; 7, 8, 9];

y = [2, 1, 1; 1, 2, 1; 1, 1, 2];

b = [4 1 0; 2 1 2; 5 1 1];

z = y*x + b*x + 2*y/x;

%z = 2*y/x;

a = x + 2 * sin(y);

The file containing this script is matlaba70.isc in the subfolder

/SampleScripts/MATLABprograms of the iSCRIPT installation folder. Run this file in

iSCRIPT as follows:

 70

1. Open iScript Editor.

2. Select “File > Open” from the menu.

 The File Open dialog box appears.

3. Navigate to the subfolder /SampleScripts/MATLABprograms of the iSCRIPT

installation folder.

4. Open the file matlaba70.isc.

5. Select “Tools > Run Current Script/Project File” from the menu.

 The program runs and the output values of the matrix z are printed out.

8.5.3 Running other MATLAB sample programs

Additional examples running scripts created in MATLAB are available in the

subfolder /SampleScripts/MATLABprograms of the iSCRIPT installation folder and

are described in sample problems 12 through 15 in Appendix C.

8.6. Running an Executable (or Third-Party Software)

The executable used for this illustration was actually generated from a MATLAB

script. The procedure to compile the script into an executable is also described. The

method for interfacing with a third-party software is illustrated in a system modeling

context in which one (or all) of the subsystems are modeled in a different software.

Figure 7.2 presents a schematic of the procedure. In the figure, a complete aircraft is

modeled, modeling each subsystem in a decomposed fashion. It is assumed that the

propulsion subsystem (PS) is modeled in a separate executable file that receives

parameter input representing variables, such as the operating point Mach number,

altitude, and amount of bleed air extracted for the environmental control subsystem

(ECS).The iSCRIPT model integrates the PS program into the complete aircraft

model by writing the parameter input into a file in the required format of the PS

model, running the PS program, and retrieving the output from the output file in the

program’s output format.

 71

Aircraft model

AFS

(iScript model)

ECS

(iScript model)

PS

ECS

(iScript model)

Write evaluation point

input parameters to

file

Execute the precompiled

MATLAB PS model

• Reads evaluation point input

parameters from file written by

iScript

• Models the PS

• Writes the results to file

Read evaluation point

results from file

Aircraft model

AFS

(iScript model)

ECS

(iScript model)

PS

ECS

(iScript model)

Write evaluation point

input parameters to

file

Execute the precompiled

MATLAB PS model

• Reads evaluation point input

parameters from file written by

iScript

• Models the PS

• Writes the results to file

Read evaluation point

results from file

Figure 7.2. An aircraft model with the PS subsystem modeled in a software or

executable outside of iSCRIPT.

The solution consists of the following files in the /SampleScripts/PS_inMATLAB

subfolder of the iSCRIPT installation folder:

PS_conv.m a MATLAB program that rates a low-bypass turbofan aircraft

engine. The input to the program includes the altitude, Mach

number, etc. This program reads the input from a file PS_input.txt.

The output from the program includes several variables, including

the thrust, fuel consumption etc. The output from the program is

written to a file PS_output.txt.

ata.ipr an iSCRIPT project file containing three files: main.isc,

ps_component.isc, and ps_setting.isc. These files are described

below.

Main.isc a main program defining two components, PS_setting and

PS_Component. PS_Setting simply sets the conditions for

computing (rating) the aircraft engine.

PS_component.isc an iSCRIPT component model file. This model file includes

commands to execute the MATLAB model. An input file is

created for the MATLAB program and the output from MATLAB

is read. The output is further used to compute certain quantities,

such as the total exergy destruction in the engine.

 72

Procedures for Running this Solution

1. Run the MATLAB program in MATLAB to check the model of the aircraft

engine.

2. Compile the MATLAB program into an executable. This step includes issuing the

command mcc –m PS_conv. An executable named PS_conv.exe is generated.

This executable was renamed to PS.exe

3. Run iSCRIPT. Enter the project file ata.ipr at the iSCRIPT prompt.

4. View the results.

5. Note that the model may be optimized further on the high-level using the

optimization procedures present in the iSCRIPT program, as described in Chapter

6.

 73

9. Conclusions

Future development of TTC’s scripting language will continue to extend the current

capabilities, adding more intrinsic functions, e.g., for non-linear analysis, dynamic

analysis, solvers etc. The consistent motive would be to create an easy, powerful

modeling and design/optimization tool compatible with the scripting languages that

engineers use most often. A GUI procedure to utilize the power of the scripting language

and optimization procedure in graphic block-building approach will also be separately

available. Sample screen of this program is shown below. The underlying code modeling

the components and subsystems depicted graphically would be the iSCRIPT platform.

1. Create components

3. Indicate coupling variables

4. Construct component model

2. Enter component variables

(a) System consisting of

several components

(b) Process for developing

component model

1. Create components

3. Indicate coupling variables

4. Construct component model

2. Enter component variables

(a) System consisting of

several components

(b) Process for developing

component model

Figure 9.1. A graphical system building tool to complement iSCRIPT.

 74

Appendix A. iSCRIPT Language Reference

A.1. Variables and Expressions

In stand-alone scripts, variables are declared as follows:

var1, var2 as type

var1, var2 – variable names satisfying the variable naming convention.

as – declaration keyword

type – may take values: logical, short, long, real, and double

A.1.1. Types of Variables

Logical variables

Logical variables take on values of T or F. In addition, values of 0 or any real number

may be assigned to logical variables. A numeric value of 0 will be converted to F

prior to assignment, while other numbers will be converted to T.

Short variables

Short variables have values in the range -32,768 to 32,767. They are also type

INTEGER(2) in FORTRAN. The syntax for the declaration also allows the use of

INTEGER(2) or INTEGER*2 keywords.

Long variables

Long variables have values in the range -2,147,483,648 to 2,147,483,647. They are

also type INTEGER in FORTRAN. The syntax for the declaration also allows the use

of INTEGER, INTEGER(4) or INTEGER*4 keywords.

Real variables

Holds signed IEEE 32-bit (4-byte) single-precision floating-point numbers ranging in

value from -3.4028235E+38 through -1.401298E-45 for negative values and from

1.401298E-45 through 3.4028235E+38 for positive values. The syntax for the

declaration also allows the use of SINGLE, REAL(4), or REAL*4 keywords.

Double variables

Holds signed IEEE 64-bit (8-byte) double-precision floating-point numbers ranging

in value from -1.79769313486231570E+308 through -4.94065645841246544E-324

for negative values and from 4.94065645841246544E-324 through

1.79769313486231570E+308 for positive values. The syntax for the declaration also

allows the use of REAL(8) or REAL*8 keywords.

 75

A.1.2. Variable Names

Variable names may be up to 24 characters long and can be alphanumeric. However,

variables must not begin with a “_” or a numeral, and must not be separated by

spaces. Examples of valid variable names include:

 ii Reynolds_No Ma
 jNo iwhat Total_Value

A.1.3. Numbers

Conventional decimal notation is used, with an optional decimal point and leading

plus or minus sign, for numbers. Scientific notation uses the letter e to specify a

power-of-ten scale factor. Some examples of legal numbers are

 7 -82 0.00007
 7.4382259 1.60210e-20 9.1345e14

All numbers are stored internally using the double type described in Section 2.1 and

as specified by the IEEE floating-point standard.

A.1.4. Assignment Operator

The “=” symbol is used as the assignment operator.

var1 = 1.002

A.1.5. Arithmetic Operators

Arithmetic operators include:

Operator Function

- Subtraction.
Subtracts a variable, number, or expression on the

right from a variable, number, or expression on the left
of the operator.

+ Addition.

Adds a variable, number, or expression on the right to a
variable, number, or expression on the left of the

operator.
* Multiplication.

Multiplies a variable, number, or expression on the right

to a variable, number, or expression on the left of the
operator.

/ Division.
Divides a variable, number, or expression on the left by
a variable, number, or expression on the left of the

operator.

 76

^, ** Power.
Raises a variable, number, or expression to the left to a

power defined by a variable, number, or expression on
the right.

() Brackets.
Independently evaluate the value contained within the
brackets.

The precedence of the operators is as shown from top to bottom, i.e. ‘**’ are

computed before ‘-’ when they are in the same expression.

A.1.6. Relational Operators

Relational operators include:

Operator Function
< Less than.

Compares a variable, number, or expression on the

right to an variable, number or expression on the left of
the operator. Returns a value of 1 or true if the value

on the left is less than that on the right.
> Greater than.

Compares a variable, number, or expression on the

right to an variable, number or expression on the left of
the operator. Returns a value of 1 or true if the value

on the left is greater than that on the right.
<= Less than or equal.

Compares a variable, number, or expression on the

right to an variable, number or expression on the left of
the operator. Returns a value of 1 or true if the value

on the left is less than or equal that on the right.
>= Greater than or equal.

Compares a variable, number, or expression on the

right to an variable, number or expression on the left of
the operator. Returns a value of 1 or true if the value

on the left is greater than or equal that on the right.
= = Equal.

Compares a variable, number, or expression on the

right to an variable, number or expression on the left of
the operator. Returns a value of 1 or true if the value

on the left is equal that on the right.
!= Not equal.

Compares a variable, number, or expression on the

right to an variable, number or expression on the left of
the operator. Returns a value of 1 or true if the value

on the left is not equal that on the right.

 77

A.1.7. Logical Operators

Logical operators include:

Operator Function
& LOGICAL AND.

Returns a value of 1 or true if the variable, number, or
expression on the right is true (or non zero) and the

variable, number, or expression on the right is also
true.

| LOGICAL OR.

Returns a value of 1 or true if either the variable,
number, or expression on the right is true (or non zero)

or the variable, number, or expression on the right is
true.

~ NOT.
Returns a value of 1 or true if the variable, number, or
expression on the right is not true (or is zero).

A.1.8. Expressions and Equations

Expressions may be generated as a combination of variables, numbers, and operators.

Examples include:

Re = rho * U * L / mu

Speed_of_sound = (gamma * P/rho) ^ 0.5

iparameters_provided = Reynolds & Ma

iSCRIPT is case-insensitive and free-form. This also means that empty lines, spaces,

and comments can be included as desired without consequence to the performance of

the scripts. This also means that programs can be indented and commented

appropriately for easy code maintenance.

A.1.9. Comments

Comments may be included in a script using the # or % symbols. Comments may

occupy a whole line or be included after an expression. In either case, all input

following a comment symbol is ignored. Examples include:

The parameters of the flow are computed below
Re = rho * U * L / mu # Reynolds no. Eqn(1.3)

Speed_of_sound = (gamma * P/rho) ^ 0.5 # Sound speed. Eqn(1.4)

 78

A.2. Arrays

Scripts may include arrays of any size or dimensions. Arrays may be declared similar

to other variables but must include the size and dimension of the arrays in brackets

after the array names. Array sizes must be integer values. Examples include:

matrixA(3,3) as real

array1(5,2), inumber as integer

A.2.1. Referencing Array Elements

Array elements may be referenced using numbers, variables, or expressions. The type

of the number, variable, or expression will be converted to integer at runtime.

Examples include:

 matrixA(1,1) = 12.2

 matrixA(1,2) = Reynolds_No

 matrixA(1,3) = rho * U * L / mu

 matrixA(j + sin(t + r^2), k) = cos(omega * t)

Arrays can be included directly in expressions and array arithmetic performed.

A.2.2. Assigning Values to Arrays

Literal values can be directly assigned to array variables. For instance, the segment

below generates a 3 x 3 matrix x.

x(3,3) as integer

x = [4, 2, 3; 4, 6, 6; 7, 8, 9];

A.2.3. Matrix Arithmetic

Matrix arithmetic, such as multiplication, divisions, additions, etc., may be performed

directly. An example is shown below.

i,x(3,3),y(3,3),b(3,3) as integer

z(3,3),a(3,3) as real

x = [4, 2, 3; 4, 6, 6; 7, 8, 9];

 79

y = [2, 1, 1; 1, 2, 1; 1, 1, 2];

b = [4 1 0; 2 1 2; 5 1 1];

z = y*x + b*x + 2*y/x;

a = x + 2 * sin(y);

A.3. Decision Structure

iSCRIPT uses the if-elseif-else-endif statement to implement the conditional

execution of segments of a program. The syntax is as shown below:

if (expression1) then
 …

elseif (expression2) then
 …

elseif (expression3) then
 …

else
 …

end if

The following rules govern the use of the if statement.

 expression1, expression2, and expression3 are valid expressions

constructed as in Section 4.1.

 … represents one or more lines of scripting language segments (which may

include other if statements).

 else if may also be used instead of elseif.
 endif or end may also be used instead of end if.
 It is not mandatory to have the elseif or else portions of the if statement.

 There is no limit to the number of elseif segments that may be included in an

if structure.

 There can be only one else statement in an if structure.

 if statements may be nested as desired.

A.4. Loop Structure

iSCRIPT uses the do, for, and while statements to implement the conditional

execution of segments of a program. The syntax for each type is described below.

 80

A.4.1. Do Loops

do ii = expression1 : expression2
 …

end do

The following rules govern the use of the do statement.

 ii is a variable declared as in Section 4.1 (ii may be a short, long, real, or

double variable).

 expression1 and expression2 are valid expressions constructed as in

Section 4.1.

 … represents one or more lines of scripting language segments (which may

include other do statements) and is referred to as the body of the loop.

 ii is incremented by 1 and the body of the loop executed until expression1 is

greater than expression2.

 The body is not executed at all if expression1 is greater than expression2 at

the start of the loop.

 enddo or end may also be used instead of end do.

 do statements may be nested as desired.

A.4.2. For Loops

for ii = expression1 : expression2
 …

end for

The following rules govern the use of the for statement.

 ii is a variable declared as in Section 4.1 (ii may be a short, long, real, or

double variable).

 expression1 and expression2 are valid expressions constructed as in

Section 4.2.

 … represents one or more lines of scripting language segments (which may

include other for statements) and is referred to as the body of the loop.

 ii is incremented by 1 and the body of the loop executed until expression1 is

greater than expression2.

 The body is not executed at all if expression1 is greater than expression2 at

the start of the loop.

 endfor or end may also be used instead of end for.
 for statements may be nested as desired.

 81

A.4.3. While Loops

while (expression1)
 …

end

The following rules govern the use of the while statement.

 expression1 is a valid expressions constructed as in Section 4.2.

 … represents one or more lines of scripting language segments (which may

include other for statements) and is referred to as the body of the loop.

 The body of the loop is executed until expression1 evaluates to false or 0.

 The body is not executed at all if expression1 is false or evaluates to 0 at the

start of the loop.

 while statements may be nested as desired.

A.5. Subprogram and Function

iSCRIPT allows the use of subprograms to introduce program structure and allow

the organization of parts of the model. For instance a subroutine or function may

be generated separately and called multiple times to perform a specific purpose.

Subprograms are useful in creating codes or models that are easily maintained,

and help to avoid rewriting whole segments of code that may be required more than

one time.

Scripts may be created without any particular start or end program indicator. In this

case, the entire script is assumed to be one program and subprograms can not be

used. To use subroutines and subfunctions, a start and end program indicator

must separate the program and start and end subprogram indicators must also be

used. All scripting elements outside of these demarcators are ignored. The exact

syntax for structure limiters are described in this chapter.

A.5.1. Program Structure

program programname
 variable declaration statements
 …

end program

The following rules govern the use of program structure statements.

 82

 programname is the name of the program and must be contrived according

to variable naming conventions described in Section A.1.2.

 variable declaration statements represents several lines of variable

declaration statements as described in Section A.1.1.

 … represents one or more lines of scripting language segments and is referred

to as the body of the program.

 endprogram may also be used instead of end program.

 There can be only one program in a model of a component.

A.5.2. Subroutine Structure

subroutine subroutinename (arg1, arg2, …, argN)
 variable declaration statements
 …

end subroutine

The following rules govern the use of the subroutine structure statements.

 subroutinename is the name of the subroutine and must be named

according to variable naming conventions described in Section A.1.2.

 variable declaration statements represents several lines of variable

declaration statements as described in Section A.1.1.

 arg1, arg2, …, argN are variables or arrays named according to conventions

described in Section A.1.2 and are called the dummy arguments to the

subprogram.

 The dummy arguments to the subprogram must be declared in addition to any

other variable declared within variable declaration statements.

 … represents one or more lines of scripting language segments and is referred

to as the body of the subprogram.

 endsubroutine may also be used instead of end subroutine.

A.5.3. Calling a Subroutine

A subroutine may be called within a program, other subroutine, or function. A

subroutine may also be called recursively. Subroutines may be called using the call
keyword.

call subroutinename (arg1, arg2, …, argN)

The following rules govern the process of calling a subroutine.

 subroutinename is the name of the subroutine and must be the same as that

used in the subroutine keyword in A.5.2.

 83

 arg1, arg2, …, argN are variables or arrays named according to conventions

described in Section A.1 and are called the actual arguments to the

subprogram.

 The names of the actual arguments may be different from those of the dummy

arguments in Section A.5.2. However, the type and array sizes must match if

the actual and dummy arguments are arrays.

 The program or subprogram within which the above statement is placed is

referred to as the calling program or subprogram.

 The actual arguments to the subprogram must be declared in addition to any

other variable declared within the calling program or subprogram.

 At runtime the values of the actual arguments, if modified within the

subroutine, is returned to the calling program or subprogram.

A.5.4. Function Structure

function functionname (arg1, arg2, …, argN)
 variable declaration statements
 …

end function

The following rules govern the use of the function structure statement.

 functionname is the name of the function and must be named according to

variable naming conventions described in Section A.1.

 variable declaration statements represents several lines of variable

declaration statements as described in Section A.1.

 arg1, arg2, …, argN are variables or arrays named according to conventions

described in Section 4.1 and are called the dummy arguments to the

subprogram.

 The dummy arguments to the subprogram must be declared in addition to any

other variable declared within variable declaration statements.

 functionname must be declared in addition to any other variable declared

within variable declaration statements. functionname may be declared

as an array.

 … represents one or more lines of scripting language segments and is referred

to as the body of the subprogram.

 endfunction may also be used instead of end function.

A.5.5. Calling a Function

A function may be called within a program, other subroutine, or function. A

function may also be called recursively. Functions may be called simply using

them in an expression in lieu of a variable or array.

var = functionname (arg1, arg2, …, argN)

 84

Examples

Function Calls Actual Function
…

Re = Reynolds_No (rho, U, L, mu)

…

Re_is = Reynolds_No (rho, U, L,

mu)^gm

…

Function Reynolds_No (r, V, L,

mu)

r, V, L, mu as real

Reynolds_No = r * V * L / mu

End Function

The following rules govern the process of calling a function.

 var is the name of a variable or array named according to conventions

described in Section A.1.

 functionname is the name of the subroutine and must be the same as that

used in the function keyword in Section A.5.2.

 arg1, arg2, …, argN are variables or arrays named according to conventions

described in section A.1 and are called the actual arguments to the function.

 The names of the actual arguments may be different from those of the dummy

arguments in Section A.5.2. However, the type and array sizes must match if

the actual and dummy arguments are arrays.

 The program or subprogram within which the above statement is placed is

referred to as the calling program or subprogram.

 The actual arguments to the function must be declared in addition to any other

variable declared within the calling program or subprogram.

 At runtime the values of the actual arguments, if modified within the function,

is returned to the calling program or subprogram.

 At runtime, the value of the functionname as a variable is returned to the

calling program or subprogram and used to evaluate the expression to the right

of the assignment symbol.

A.5.6. Return

When used in a function or subroutine, the return statement acts in exactly the same

way as the end function or end subroutine statements. A sample of syntax is

illustrated below:

subroutine subroutinename (arg1, arg2, …, argN)
 variable declaration statements
 …

 return
 …

end subroutine

 85

In the above syntax, on encountering the return syntax, the subroutine is ended and

rest of the subroutine is not executed. Used within decision statements, the return

keyword may be used to conditionally end the execution of a subprogram when

certain outcome has been attained.

A.5.7. Argument Passing Convention

Arguments are passed by reference in iSCRIPT similar to FORTRAN. However, if

MATLAB syntax is selected, arguments are passed by value. Expressions and

literal values are passed by value. Global and component variables are also passed

by value (since they are global variables and do not need to be passed into

subprograms if their values are intended to change in any subprogram).

A.6. Other Program Flow Structure

For compatibility with other engineering programming tools, iSCRIPT supports

additional syntax including the break and continue keywords as well as labels and

go to statements.

A.6.1. Break

This keyword is used only for scripts indicated as MATLAB source. The break

statement terminates the execution of a loop segment. In nested loops, the break

statement only exits the loop within which it occurs.

Examples:

for ii = expression1 : expression2
 …
 break
 …
end for

for ii = expression1 : expression2
 …
 if (expression3) then
 …

 break
 …
 end if
 …

 86

end for

Both examples above cause the premature termination of the for loop on

encountering the break statement. In the second case, the termination only occurs

on the condition of expression3.

A.6.2. Continue

This keyword is used only as a place holder. For instance, the continue keyword

may be used to establish a label. The presence of the continue keyword has no

effect whatsoever in a scripting segment. Examples are included in A.6.3.

A.6.3. Go to and labels

The goto statement is used to influence program flow. This statement is used in

conjunction with a label statement. The syntax is shown below.

…
goto :label
…
:label

The rules governing goto and label statements are as follows:

 label is an alphanumeric word defined according to the rules for naming

variables as described in Section A.1. label words must not be declared.

 “goto” or “go to” may be used.

 … represents one or more lines of scripting language segments within the

same program or subprogram.

Example 1 (using the continue keyword):

Re = rho * U * L / mu

If (Re <= 2500) then

 f = 16/Re

go to :2000

end if

f = 0.0064 *Re ^ 0.4

:2000 continue

Example 2 (using a label with an expression):

Re = rho * U * L / mu

 87

If (Re <= 2500) then

go to :2000

end if

f = 0.0064 *Re ^ 0.4

:2000 f = 16/Re

A.7. Intrinsic Functions

Below is a list of supported intrinsic functions. Their arguments and characteristics

are the same as their FORTRAN equivalents. This list is constantly increasing.

Please check our website for an updated list at any time.

 1. cos
 2. sin
 3. tan
 4. exp
 5. log
 6. log10
 7. sqrt
 8. acos
 9. asin
 10. atan
 11. cosh
 12. sinh
 13. tanh
 14. anint
 15. aint
 16. abs
 17. real
 18. dble
 19. alog10
 20. alog
 21 sizeof
 22 length
 23 sum
 24 avg
 25 min
 26 max

A.8. Input/Output

iSCRIPT includes commands for input/output to screen, keyboard, and files. The

commands are described in this section.

 88

A.8.1. Opening a File

A file may be opened using the open command. The syntax is as shown below.

call open (unit, ‘filename’, [‘permission_mode’], arg1, arg2, …, argN)

or

unit = open (‘filename’, [‘permission_mode’], arg1, arg2, …, argN)

The following rules govern the process of calling the open command.

 unit is an integer between 10 and 100 provided as a handle for opening the file.

This handle should be used when reading from or writing to the file. When the

unit is an output, iSCRIPT opens the file on an available unit and supplies the

unit as the function output.

 filename is a string representing the name of the file to be opened and must be

in accordance with the file naming rules on the operating system. Filename must

be enclosed in single quotes.

 fopen may be used instead of the open keyword.

 Permission_mode is one of the options specified in the table below:

Permission Mode Specifiers

Permission_mode Description

Text Mode

'rt' Open file for reading (default).

'wt' Open file, or create new file, for writing; discard existing contents, if any.

'at' Open file, or create new file, for writing; append data to the end of the file.

'rt+' Open file for reading and writing.

'wt+' Open file, or create new file, for reading and writing; discard existing contents, if any.

'at+' Open file, or create new file, for reading and writing; append data to the end of the file.

Binary Mode

'r' Open file for reading (default).

'w' Open file, or create new file, for writing; discard existing contents, if any.

'a' Open file, or create new file, for writing; append data to the end of the file.

'r+' Open file for reading and writing.

'w+' Open file, or create new file, for reading and writing; discard existing contents, if any.

'a+' Open file, or create new file, for reading and writing; append data to the end of the file.

 89

A.8.2. Closing a File

An open file may be closed using the close command. The syntax is shown below.

call close (unit)

or

ivar = close (unit)

The following rules govern the process of calling the close command.

 unit is an integer between 10 and 100 representing the handle for the open file.

 The output of the close command is 0 if successful and -1 if an error occurred.

The exact error based on the operating system is written in the iSCRIPT log file.

 fclose may be used instead of the open keyword.

A.8.3. Reading from a File or the Keyboard

The syntax to read from an open file or the standard input (usually the keyboard) is

shown below.

call read ([unit], [‘format’], [arg1], [arg2], …, [argN])

call read ([unit], [‘format’]) [arg1], [arg2], …, [argN]

or

A = read ([unit], [‘format’], [isize])

A = fscanf ([unit], [‘format’], [isize])

The following rules govern the process of calling the read command.

 unit is an integer between 10 and 100 representing the handle for the open file.

No unit specified, units 1, 2, 5, or 6 refers to the keyboard.

 format is a string representing the read format. The format string may be

omitted (simply provide an empty “,”) or an * used instead. The format string

when read is currently ignored but is accepted for compatibility with future

versions of iSCRIPT. The MATLAB format specifiers are accepted.

 fscanf may be used instead of the read keyword except when no argument is

provided (empty read).

 arg1, arg2, …, argN are strings, variables or arrays. Strings must be enclosed

in single quotes.

 A is a variable or array.

 90

 When specified, isize refers to the total number of elements that should be read.

When isize exceeds the size of the array, the size of the array is used.

 If an end of file occurs during a read, the command returns and the program

resumes. An internal flag is set which may be queried using the eof command (

(see Section A.8.6).

A.8.4. Writing to a File or the Screen

The syntax to write to an open file or the standard output (usually the screen) is

shown below.

call write ([unit], [‘format’], [arg1], [arg2], …, [argN])

call write ([unit], [‘format’]) [arg1], [arg2], …, [argN]

or

isize = write ([unit], [‘format’], [arg1], [arg2], …, [argN])

isize = fprintf ([unit], [‘format’]) [arg1], [arg2], …, [argN]

The above rules govern the process of calling the write command.

 unit is an integer between 10 and 100 representing the handle for the open file.

No unit specified, units 1, 2, 5, or 6 refers to the keyboard.

 format is a string representing the read format. The format string may be

omitted (simply provide an empty “,”) or an * used instead. The format string

when read is currently ignored but is accepted for compatibility with future

versions of iSCRIPT. The MATLAB format specifiers are accepted.

 fprintf may be used instead of the write keyword.

 arg1, arg2, …, argN are strings, variables or arrays. Strings must be enclosed

in single quotes.

 isize is a value returned representing the number of bytes or characters written.

A.8.5. Rewinding a File

An open file may be returned to the start of file using the close command. The

syntax is shown below.

call rewind (unit)

or

ivar = rewind (unit)

The following rules govern the process of calling the close command.

 91

 unit is an integer between 10 and 100 representing the handle for the open file.

 The output of the rewind command is 0 if successful and -1 if an error occurred.

The exact error based on the operating system is written in the iSCRIPT log file.

 frewind may be used instead of the open keyword.

A.8.6. End-of-File Function

An end of file (eof) command may be called to determine if end of file occurred

during the last call to the read command on a specified file open handle. The syntax

is as follows:

ivar = eof (unit)

The following rules govern the process of calling the close command.

 unit is an integer between 10 and 100 representing the handle for the open file.

 The output of the eof command is 1 if end-of-file occurred or 0 otherwise.

 feof may be used instead of the eof keyword.

A.9. Object-Oriented Features and Component Modeling

iSCRIPT has object-oriented features that allows you to define component objects

(or structures) and variables attached to those structures. In iSCRIPT, the structures

can be created as components and the properties of the component are referred to as

component variables. However, unlike normal structures, all components

automatically support the Component.Execute method. The syntax to define an

object and the properties or variables of the objects is described below.

Note that a global component exists for every project as described in Section A.9.3.

The global component has no execute file.

A.9.1. Defining a Component

An object may be defined using the following syntax:

CreateComponent (name [,description])

Note: Segments enclosed in square brackets are optional and may be omitted.

name – A name for the component (a string limited to 24 characters). Two

components may not have the same name. Component names obey

the same formation rules as those for variables.

description – A description for the component (a string limited to 50 characters).

Optional.

 92

NOTE: THERE IS NO NEED TO ENCLOSE CHARACTER ARGUMENTS IN

QUOTES FOR THIS COMMAND.

Example:

program main

T_in, T_out as real

CreateComponent (Heat_Ex1)

CreateVariable (Heat_Ex1, Tin)

CreateVariable (Heat_Ex1,Tout)

T_in = 286.16

Heat_Ex1.Tin = T_in

…

…

A.9.2. Defining a Component Variable

A component variable may be defined using the following syntax:

CreateVariable (component, name [,type] [,dimension] [,size]
[,upper_bound] [,lower_bound] [,default_value] [,unit])

Note: Segments enclosed in square brackets are optional and may be omitted.

component – The component to which the variable belongs (a string limited to

24 characters). Two component variables may not have the same

name. Component variable names obey the same formation rules

as those for variables.

name – A name for the component (a string limited to 24 characters).

Two components may not have the same name. Component

names obey the same formation rule as those for variables.

type – A string accepting values such as “integer,” “real,” “double.” A

complete list of variable types can be found in Section A.1. This

argument is optional. When not provided, component variables

are assumed to be double values.

dimension – Variable dimension for an array variable (integer). For example,

a 2D matrix will have a dimension of 2. This argument is

optional for scalar variables (dimension = 0 is default).

 93

size – Variable size for an array variable. This argument accepts an

integer array with a limit of five integers. For example, a 3 x 3

matrix will have a size of (3,3). This input must be enclosed in

brackets. This input is required when dimension > 0.

upper_bound – An upper bound for the variable (all the variables for an array

variable). The type of this argument depends on type. This

argument is optional.

lower_bound – A lower bound for the variable (all the variables for an array

variable). The type of this argument depends on type. This

argument is optional.

default_value – A default value for the variable (all the variables for an array

variable). The type of this argument depends on type. This

argument is optional.

unit – A string representing the engineering unit used in providing the

variable values (e.g., m/s). This argument is also optional and

when provided is limited to 20 characters.

NOTE: THERE IS NO NEED TO ENCLOSE CHARACTER ARGUMENTS IN

QUOTES FOR THIS COMMAND.

A.9.3. Executing a Component

A component may be executed using the following syntax:

Component_name.execute

Or

Call Component_name.execute

Component_name – Character(24). The component name as defined in 4.9.1.

The execute routine must be a subroutine with the same name as

Component_name and require no arguments.

 94

A.9.4. Using Global Variables in the In-Built Global Component

Global variables may be created only in the main program. Global variables do not

need to be created using the CreateVariable command (although this command

may be used as well). Instead, global variables may be created simply by prefixing

a declaration with the Global keyword, as in Section 2.1.

Global Re, Ma as real

Global variable names must be unique among variable names but may coincide

with a local variable name. Reference to global variables is similar to that for all

components, as illustrated in the example below:

 program

 global emCp, Q1 as real
 localemCp, Q, r as real

 global.emCp = 209.4

 r = 4.0

 localemCp = global.emCp

 end program

 95

Appendix B. iSCRIPT Optimization Reference

B.1. Design/Optimization Analysis Procedures

iSCRIPT provides functions and procedures to optimize components and systems.

The functions utilize a combination of genetic and gradient-based algorithms. The

integrated local global optimization (ILGO) procedure is a powerful option used to

optimize a system consisting of several sub-systems. This procedure allows the

optimization of large systems within a feasible time-frame, as compared to

procedures that utilize nested optimization loops through several component

optimization levels. The procedure is illustrated below:

Component 1 Component 2 Component n Component n+1
Component

n+m+k+1
Component n+m

Component

n+m+k+2
… … …

Subsystem 1 Subsystem 2 Subsystem L
Coupling between

subsystem 1 & 2

Coupling between

subsystem 2 & L

Coupling between

subsystem 1 & L

D
E

T
A

IL
E

D

O
P

T
IM

IZ
A

T
IO

N

IL
G

O

O
P

T
IM

IZ
A

T
IO

N

Component 1 Component 2 Component n Component n+1
Component

n+m+k+1
Component n+m

Component

n+m+k+2
… … …

Subsystem 1 Subsystem 2 Subsystem L
Coupling between

subsystem 1 & 2

Coupling between

subsystem 2 & L

Coupling between

subsystem 1 & L

D
E

T
A

IL
E

D

O
P

T
IM

IZ
A

T
IO

N

IL
G

O

O
P

T
IM

IZ
A

T
IO

N

Figure 5.1. Optimization procedure.

DETAILED OPTIMIZATION

When an optimization command is invoked on any component, the system will

launch a detailed optimization based on a combination of genetic and gradient-

based algorithms. The relationship between sub-systems, systems, and components

is utilized for optimization. The optimization free variables are determined from the

variables of the component being optimized as well as other components flagged as

its subcomponent. Essentially, subsystems are simply components that consist of

several other components by virtue of the model equations (its model equations

consist of the declaration of other components). If this component is a sub-system

that can be defined integrally and separately from other sub-systems, the

optimization procedure will proceed faster by indicating that the component is a

subsystem and interacts with other subsystems via a finite and few number of

variables. Then, the subsystem is optimized in detail. This procedure will proceed

faster than calling an optimization command on each component and then calling an

overall optimization command on the subsystem.

ILGO OPTIMIZATION (GLOBAL OPTIMIZATION)

When a project has been defined into several subsystems, each consisting of several

components, as illustrated in Figure 5.1, an optimization command may be called at

the project level. In this case, iSCRIPT will perform a detailed optimization of each

 96

subsystem and an overall optimization of the entire system (project) utilizing the

sub-system level coupling between the sub-systems.

B.2. Procedures for Performing a Detailed Optimization in iSCRIPT

To optimize a component, the following information must be provided:

 The objective variable (from the list of component variables). Note that the

equation to solve an objective function is contained within the component

model in iSCRIPT and the result of evaluating the objective function is the

objective variable, f, say, as:

H(x) = 0

based on component variables: x = [x1, x2, …, xn] of n variables

f = f(x)

Optimize w.r.t. f.

Then the component variables are: x = [x1, x2, …, xn, f] or n+1 variables, and

the component model additionally includes the equation:

f - f(x) = 0.

Note that iSCRIPT optimization functions are multi-objective and f can be a

vector of objectives fi.

 The list of variables in x that are free for optimization. Note that the fewer

variables have a degree of freedom with respect to optimization, the faster

the optimization will complete.

 The list of components encompassed within the component (which is

technically a subsystem) to be optimized (to perform a subsystem level

detailed optimization).

 The optimization command is invoked for the component.

Note that the model equation for the component may consist of execution and

optimization commands for other components resulting in nested optimization

loops. Care must be taken when setting up nested optimization loops, as the time

required increases geometrically with the number of nesting.

The procedure for providing the above information is described in subsequent

sections.

B.2.1. Indicating an Objective Variable

An objective variable may be defined using the following syntax:

 97

AddObjective (component, variable [,maxmin])

Note: Segments enclosed in square brackets are optional and may be omitted.

component -- The component to be optimized (a string limited to 24

characters). This component must be a component previously

declared with the CreateComponent command.

variable -- Name of the variable (a string limited to 24 characters). This

variable must be a variable previously declared for this

component using the CreateVariable command

maxmin -- 0 or 1. Indicates whether this is a minimization or

maximization objective. Use 0 to minimize this variable and

1 to obtain a maximum. This argument is optional. The

default value is 0.

NOTE: THERE IS NO NEED TO ENCLOSE CHARACTER ARGUMENTS IN

QUOTES FOR THIS COMMAND.

Example:

CreateComponent (Heat_Ex1)

CreateVariable (Heat_Ex1, Tin)

CreateVariable (Heat_Ex1,Tout)

CreateVariable (Heat_Ex1, Length)

CreateVariable (Heat_Ex1,Width)

CreateVariable (Heat_Ex1,Weight)

AddObjective(Heat_Ex1,Weight,0)

…

…

B.2.2. Indicating an Free Variable for Optimization

A variable to be varied in the search for an optimum is indicated as follows:

AddVarObjective (component, variable [,delta])

Note: Segments enclosed in square brackets are optional and may be omitted.

component -- The component to which the variable belongs (a string

limited to 24 characters). This component must be the

component to be optimized or a sub-component of it. This

 98

component must be a component previously declared with

the CreateComponent command.

variable -- Name of the variable (a string limited to 24 characters). This

variable must be a variable previously declared for this

component using the CreateVariable command.

delta -- This variable further narrows the optimization search space

for this domain to),(),,(ii xMMINxLMAX from

[L, M], where L and M are the lower and upper bounds for

variable, xi, as defined in CreateComponentVariable, xi is

the current values of the variable, and is delta. It is useful

to further reduce the search space after a prior optimization

step or after an initial computation based on initial

conditions. This variable is also used internally to narrow the

optimization search space in the ILGO procedure (discussed

later) following the first ILGO step. The type of the argument

depends on the type of the variable.

NOTE: THERE IS NO NEED TO ENCLOSE CHARACTER ARGUMENTS IN

QUOTES FOR THIS COMMAND.

Example:

CreateComponent (Heat_Ex1)

CreateVariable (Heat_Ex1, Tin)

CreateVariable (Heat_Ex1,Tout)

CreateVariable (Heat_Ex1, Length)

CreateVariable (Heat_Ex1,Width)

CreateVariable (Heat_Ex1,Weight)

AddObjective(Heat_Ex1,Weight,0)

AddVarObjective(Heat_Ex1,Length)

AddVarObjective(Heat_Ex1,Width)

…

…

B.2.3. Indicating Component Relationships

A component may be flagged as contained within another component as follows:

AddSubComponent (component, sub-component)

 99

component -- A component (subsequently a sub-system) to which another

component is contained within (a string limited to 24

characters). This component must be the component to be

optimized or a sub-component of it. This component must be

a component previously declared with the

CreateComponent command.

sub-component -- The component to which belongs to the sub-system (a string

limited to 24 characters). This component must be the

component to be optimized or a sub-component of it. This

component must be a component previously declared with

the CreateComponent command.

NOTE: THERE IS NO NEED TO ENCLOSE CHARACTER ARGUMENTS IN

QUOTES FOR THIS COMMAND.

Example:

CreateComponent (Heat_Ex1)

CreateVariable (Heat_Ex1, Tin)

CreateVariable (Heat_Ex1,Tout)

CreateComponent (Heat_Ex2)

CreateVariable (Heat_Ex2, Tin)

CreateVariable (Heat_Ex2,Tout)

CreateComponent (ECS)

CreateVariable (ECS, Weight)

CreateVariable (ECS, Drag)

AddSubComponent (ECS, Heat_Ex1)

AddSubComponent (ECS, Heat_Ex2)

…

…

The indication of a component as belonging to another is only used when an

optimization command is called. When the optimization command is called for a

component, iSCRIPT will search for optimization variables from the component

and all components belonging to it to perform an overall detailed optimization of

the component.

B.2.4. Component Optimize Command

 100

A component may be optimized using the following syntax:

 Component.optimize

Component -- A component name (a string limited to 24 characters) as

defined in A.10.1.

B.2.5. Procedures for Performing an ILGO Optimization

In addition to the information required for optimizing components, sub-systems

require the following information:

 An indication of the subsystems in the project or system (each project is

automatically assumed to represent one system).

 The list of components that make up the sub-system (as indicated in Section

11.4).

 An indication of the coupling variables between sub-systems.

The procedure for providing the above information is described in subsequent

sections.

B.2.6. Indicating a Subsystem

A subsystem may be indicated using the following command:

AddSubsystem (component)

component -- The component to flag as a subsystem (a string limited to 24

characters). This component must be the component to be

optimized or a sub-component of it. This component must be a

component previously declared with the CreateComponent
command.

B.2.7. Indicating Inter-Component (Subsystem) Coupling

A coupling between two components (subs-systems) as follows:

AddCoupling (component1, variable1, component2, variable2)

component1 -- The component to which the variable belongs (a string limited

to 24 characters). This component must be the component to be

 101

optimized or a sub-component of it. This component must be a

component previously declared with the CreateComponent
command.

variable1 -- Name of the variable (a string limited to at most 24 characters).

This variable must be a variable previously declared for this

component using the CreateVariable command.

component2 -- The component to which the variable belongs (a string limited

to at most 24 characters). This component must be the

component to be optimized or a sub-component of it. This

component must be a component previously declared with the

CreateComponent command.

variable2 -- Name of the variable (a string limited to at most 24 characters).

This variable must be a variable previously declared for this

component using the CreateVariable command

The above specification is interpreted as:

Component1.Variable1 = Component2.Variable2.

If the coupling is a function, e.g.

Heat_Ex1.Q = 1.2*SecondaryHeat_Ex.Q + MCP(T2 – T1)

An additional component variable may be created – SecondaryHeat_Ex.Q_Couple

In the system model, this variable may be set as:

SecondaryHeat_Ex.Q_Couple = 1.2*SecondaryHeat_Ex.Q + MCP*(T2 – T1)

This variable may then be coupled to Heat_Ex1.Q.

B.2.8. ILGO Optimize Command

A system may be optimized using the following syntax:

System.Optimize

When the system.optimize command is invoked, iSCRIPT searches for every sub-

system defined in the project and optimizes each one. Then, an ILGO optimization

is performed, as described in Section 11.6, using the coupling variables.

 102

B.2.9. Performing Detailed Optimization at the System Level (without ILGO)

A system-level global optimization may also be performed the traditional way

without using the ILGO procedure. This will usually result in nested optimization

loop. In this case, subsystems do not need to be indicated and inter component

coupling are simply contained within the models. Optimization is called for each

component, as well as for the sub-system (which contains components for which

optimizations are called). Optimization is also called for an overall system

component, which is created and contains every other component. For the system in

Figure 6, the calls will be as shown below:

Component1 model
equations

.

.

Component1.Optimize

Component2 model
equations

.

.

Component1.Optimize

Componentn+m+ model
equations

.

.

Componentn+m+.Optimize

Componentx model
(Subsystem 1)

equations
.
.

Component1.Execute
.

Component2.Execute
.
Componentn.Execute

Componentx.Optimize

Componenty model
(Subsystem 2)

equations
.
.

Componentn+1.Execute
.

Componentn+m.Execute
.
Componenty.Optimize

Componentz model
(Subsystem L)

equations
.
.

Componentn+m+k+1.Execute
.

Componentn+m+k+2.Execute
.
Componentz.Optimize

Component model

equations

.

.

Componentx.Execute

.

Componenty.Execute

.

 103

Componentz.Execute

Component.Optimize

Note that for any fairly detailed system, the above nested optimization arrangement

will be very time consuming even if the first level is eliminated and the subsystems

are optimized integrally using the free variables from their components.

B.2.10. Optimization Genetic Algorithm

The genetic algorithm used in iSCRIPT is based on a modification of the method of

Geoff Leyland. The principles used are as follows:

 Generate an initial population by sampling sparsely over the combinatorial

search space of all variables combined.

 Improve the population over a number of generations by combining individuals

within the population. Combination is created using the following operators:

o Selection of combining or mating individuals based on a random selection

process weighted to more likely select individuals at the top.

o Combining the individuals using a blended function of the free variables.

o Interrupt the process at a low frequency using a mutation operator to

ensure that the algorithm does not settle into a non-optimal subspace.

o Replace only the bottom half of every generation after every combination

cycle.

Inherent in the above procedure is a thinning strategy that limits the population size

to a specific value (for practical purposes). During both the initial population and

improvement phases, new individuals are inserted into the sorted population such

that worse individuals drop off once the population size is at a limit. The values of

the population limit, initial sampling size, number of generations, and the mutation

frequency are variables that affect the genetic algorithm. Default values have been

set for these parameters in iSCRIPT but can be modified, as described in the next

section.

B.2.11. Optimization Parameters

 104

There are five parameters in iSCRIPT that control the genetic algorithm used for

optimization in iSCRIPT. They are implemented internally as global variables with

default settings (their values may be reset and altered in any model file). They are:

maxinitialevaluations – this parameter limits the initial search space size.

Otherwise, the algorithm attempts to sample each variable at 10 points in its search

space. For a 10 variable problem, the sample size is potentially approaching a

fraction of the number
10

C10. The parameter should be set to a lower number since

other combination and mutation operators used in subsequent generations reduces

the need to sample excessively for the initial population.

maxpopulation – this parameter limits the overall population size. Otherwise, the

algorithm attempts to set a limit of 20 times the number of variables. The

population size slows down the genetic algorithm procedure and this parameter can

be used to control the population size effectively without compromising the ability

of the process to obtain the true optima.

maxgenerations – this parameter the number of improvement generations to run.

This parameter is intended to be used if the user wishes to run the algorithm in

several cycles effectively restarting a new cycle after maxgenerations. Otherwise,

this value should be set at a large number and the convergence limit (discussed

next) used to terminate the improvement runs.

optconvergencelimit – the improvement runs are terminated after the individuals

in the top half of the population are no different from the previous generations by

this value using the L2 norm.

mutationfreq – this parameter sets the frequency of mutation per variable. The

parameter can be effectively used to control the procedure. For instance, if a

specific problem is noted to be very susceptible to local optima (or has a very

narrow optimum window), a higher value of the mutationfreq (combined with

more generation runs) will ensure that the true optima are found. (Otherwise, note

Parameter Default Value

maxinitialevaluations 1000

maxpopulation 500

maxgenerations 8

optconvergencelimit 0.001

mutationfreq 0.01

maxilgosteps 5

 105

that using high values of mutationfreq will only make it take longer to settle on the

optimum value).

maxilgosteps – Similar to maxgenerations, this parameter determines the

number of ILGO improvement steps. However, this value is usually small

considering that it nests within it several optimization runs within it. A graph of the

objective function over the ILGO steps is a good indicator of whether convergence

has been reached.

Note that the parameters must be altered according to any global variable in

iSCRIPT. For example, the maximum population size can be limited as follows:

Global.maxpopulation = 70

 106

Appendix C: MORE EXAMPLES OF iSCRIPT SYNTAX

Additional sample problems were developed and used in illustrating specific parts of the

scripting language syntax. The sample problems, their purpose and results are presented

below. They are also included in /SampleScripts folder of the iSCRIPT installation. You

may use these sample problems to gain familiarity with iSCRIPT syntax or copy any

portion of the files for use in your own script.

Sample Problem 1.

This problem illustrates the use the declaration of variables, the reading and interpretation

of expressions and the results. Notice that the program is free flow and without a start or

end program indicator. iSCRIPT is able to execute free flow scripts without any

particular program structure or subroutines.

Model

T

P

TTT

altaltaltaltP

altaltaltT

287

1010454.41025242.71066143.41061988.1

10132511018225.11052991.51018488.11063714.9

815.311082246.61060446.8102901.2

712437

429313419

828312

where alt is the altitude in m, T the temperature in K, P the pressure in Pa, and the

viscosity in Ns/m
2
, and the density in kg/m

3
. The input value of alt is supplied in ft

(alt_1) and has to be initially converted to m in the script below.

Input: File equations2.isc
1 alt T P mu rho alt_1

2 alt_1 = 3000

3 alt = alt_1 * 0.3048

4 T = (2.29013E-12*alt*alt*alt+8.60446E-08*alt*alt-6.82246E-03*alt+3.18150E+02)

5 P = 101325*(9.63714E-19*alt*alt*alt*alt - 1.18488E-13*alt*alt*alt)

6 P = P + 101325*(5.52991E-9*alt*alt- 1.18225E-4*alt + 1)

7 mu = (1.61988E-7*T*T*T-4.66143E-4*T*T+7.25242E-1*T+4.20454)*1e-7

8 rho = P/287/T

Output

The output is presented below. Only the print-out of the final value of all variables is

presented. A hand calculation may be used to confirm the accuracy of the parsed

results.

FINAL VALUES OF VARIABLES

 ==========================
alt = 914.4000

 t = 311.9852

 p = 90830.66
 mu = 1.9001649E-05

 rho = 1.014417
 alt_1 = 3000.000

 107

Sample Problem 2.

This script is used to illustrate the use of if statements, nested if statements, and if

statements with multiple brackets and single variable expression as the condition.

Model

UL
Re

 5 AND ReRe16

2500ReRe16

2500Re
Re

64

4.0

4.0

Liff

iff

iff

Input: File equations4.isc

1 rho, v, L, mu, Re, f

2 rho = 1.05

3 v = 17.0e-4

4 L = 5

5 mu = 8.5E-5

6 Re = rho * v * L / mu

7 if (Re < 2500) then

8 f = 64.0/Re

9 end

10 if (((Re >= 2500))) then

11 f = 16.0 * Re ^ (-0.4)

12 end

13 if (-Re) then

14 if (L == 5) then

15 f = 0.06 * Re ^ (-0.4)

16 end if

17 end

18

19 L = 4

Output
FINAL VALUES OF VARIABLES
 ==========================

rho = 1.050000

 v = 1.7000000E-03
 l = 4.000000

 mu = 8.5000000E-05

 re = 105.0000

 f = 9.3255732E-03

 108

Sample Problem 3.

This script is used to illustrate the use of do and for loops. For loops are treated

equivalently as do loops for compatibility with MATLAB syntax. Comments and in-

script documentation are also illustrated.

Model

UL
Re

 5 AND ReRe16

2500ReRe16

2500Re
Re

64

4.0

4.0

Liff

iff

iff

01.0ReRe

01.0
2 to1:

ff
Liloop

Input: File equations6.isc
1 rho, v, L, mu, Re, f, i as real

2

3 # Initial Values

4

5 rho = 1.05

6 v = 17.0e-4

7 L = 5./2.

8 mu = 8.5E-5

9

10 # Models

11

12 Re = rho * v * L / mu

13

14

15 if (Re < 2500) then % Testing an if segment

16 f = 64.0./Re

17 end

18 if (((Re >= 2500))) then % Testing a nested if segment

19 f = 16.0 * Re ^ (-0.4)

20 end

21 if (-Re) then % testing a logical statement

22 if (L == 5) then

23 f = 0.06 * Re ^ (-0.4)

24 end if

25 end

26

27 L = 4 # Reset L

28

29 for i = 1:2*L % testing a loop segment

30 f = f + 0.01

31 Re = Re + 0.01

32 end

33

34 # Comment line here

35

36 L = 5

Output
FINAL VALUES OF VARIABLES
 ==========================

rho = 1.05000000000000

 v = 1.700000000000000E-003
 l = 5.00000000000000

 mu = 8.500000000000001E-005

 re = 52.5800000000000
 f = 1.29904761904762

 i = 9.00000000000000

 109

Sample Problem 4.

This script is used to illustrate the use of functions and subroutines. In addition,

expressions within subprograms are also illustrated.

Model

UL
Re

2500ReRe16

2500Re
Re

64

4.0

 iff

iff

4 Re06.0

5 Re06.0

Re)(

(Re)

4.0

4.0

Lif

Lif

if

if

01.0ReRe

01.0
2 to1:

ff
Liloop

Input: File equations6d.isc
1 program

2

3 rho, v, L, mu, Re, f, i as real

4

5 # Initial Values

6

7 rho = 1.05

8 v = 17.0e-4

9 L = 5

10 mu = 8.5E-5

11

12 # Models

13

14 Re = Reynolds(rho, v, L, mu)

15

16 mu = 8.5E-5

17 call Computef(Re,f)

18 if (Re) then % testing a logical statement

19 if (-Re) then % testing a logical statement

20 if (L == 5) then

21 f = 0.06 * Re ^ (-0.4)

22 end if

23 if (L == 4) then

24 f = 0.06 * Re ^ (-0.4)

25 end if

26 end

27 end

28

29 L = 4 # Reset L

30

31 for i = 1:2*L % testing a loop segment

32 f = f + 0.01

33 Re = Re + 0.01

34 end

35

36 # Comment line here

37

38 L = 5

39

40 end program

41

42

43 function Reynolds(rho,u,L,mu)

44 rho, u, L, mu, Reynolds as real

45 Reynolds = rho * u * L / mu

46 u = 12.2

47 end function

48

49

50 subroutine Computef(Re, f)

51 Re, f as real

52 if (Re < 2500) then % Testing an if segment in a subroutine

53 f = 64.0/Re

54 end

55 if (((Re >= 2500))) then % Testing a nested if segment in a subroutine

56 f = 16.0 * Re ^ (-0.4)

57 end

58 end subroutine

 110

Output
FINAL VALUES OF VARIABLES

 ==========================
 Logical Variables 0

 Integer2 Variables 0

 Integer Variables 0
 Real Variables 7

 rho = 1.050000

 v = 12.20000
 l = 5.000000

 mu = 8.5000000E-05

 re = 105.0800
 f = 8.9325570E-02

 i = 9.000000

 Double Variables 0

 111

Sample Problem 5.

This script is used to illustrate the use of while statements and elseif and else statements.

Model

UL
Re

2500ReRe16

2500Re
Re

64

4.0

 iff

iff

Lf

Lf

Lf

Lf

Lf

Lf

Lf

f

if

 of eother valuany 007.0

6006.0

5Re06.0

4004.0

3003.0

2002.0

1001.0

Re)(

(Re)

4.0

1

01.0ReRe

01.0

2 :

1

i

ff

Liwhile

i

Input File: equations6f.isc
1 program

2

3 rho, v, L, mu, Re, f, i as real

4

5 # Initial Values

6

7 rho = 1.05

8 v = 17.0e-4

9 L = 5

10 mu = 8.5E-5

11

12 # Models

13

14 Re = Reynolds(rho, v, L, mu)

15

16 mu = 8.5E-5

17 call Computef(Re,f)

18 if (Re) then % testing a logical statement

19 if (-Re) then % testing a logical statement

20 if (L == 1) then

21 f = 0.001

22 elseif (L == 2) then

23 f = 0.002

24 elseif (L == 3) then

25 f = 0.003

26 elseif (L == 4) then

27 f = 0.004

28 elseif (L == 5) then

29 f = 0.06 * Re ^ (-0.4)

30 elseif (L == 6) then

31 f = 0.006

32 else

33 f = 0.007

34 end if

35 end

36 end

37

38 L = 4 # Reset L

39

40 i = 1

41 while (i < 2*L) then % testing a while loop segment

42 f = f + 0.01

43 Re = Re + 0.01

44 i = i + 1

45 end

46

47 # Comment line here

48

49 L = 5

50

51 end program

52

53

54 function Reynolds(rho,u,L,mu)

55 rho, u, L, mu, Reynolds as real

56 Reynolds = rho * u * L / mu

57 u = 12.2

58 end function

59

60

61 subroutine Computef(Re, f)

62 Re, f as real

63 if (Re < 2500) then % Testing an if segment in a subroutine

64 f = 64.0/Re

65 end

66 if (((Re >= 2500))) then % Testing a nested if segment in a subroutine

67 f = 16.0 * Re ^ (-0.4)

68 end

69 end subroutine

 112

Output
Logical Variables 0

 Integer2 Variables 0
 Integer Variables 0

 Real Variables 7

 rho = 1.050000
 v = 12.20000

 l = 5.000000

 mu = 8.5000000E-05
 re = 105.0700

 f = 7.9325572E-02

 i = 8.000000
 Double Variables 0

 113

Sample Problem 6.

This script is used to illustrate the use of while statements and elseif and else statements

within subroutines and functions.

Model

UL
Re

2500ReRe16

2500Re
Re

64

4.0

 iff

iff

Lf

Lf

Lf

Lf

Lf

Lf

Lf

f

if

 of eother valuany 007.0

6006.0

5Re06.0

4004.0

3003.0

2002.0

1001.0

Re)(

(Re)

4.0

1

01.0ReRe

01.0

2 :

1

i

ff

Liwhile

i

Input: File equations6g.isc
1 program

2

3 rho, v, L, mu, Re, f, i as real

4

5 # Initial Values

6

7 rho = 1.05

8 v = 17.0e-4

9 L = 5

10 mu = 8.5E-5

11

12 # Models

13

14 Re = Reynolds(rho, v, L, mu)

15

16 mu = 8.5E-5

17 call Computef(Re,f)

18

19

20 # Comment line here

21

22 L = 5

23

24 end program

25

26

27 function Reynolds(rho,u,L,mu)

28 rho, u, L, mu, Reynolds as real

29 Reynolds = rho * u * L / mu

30 u = 12.2

31 end function

32

33

34 subroutine Computef(Re, f)

35 Re, f, L as real

36 i as integer

37

38 L = 5

39

40 if (Re < 2500) then % Testing an if segment in a subroutine

41 f = 64.0/Re

42 end

43 if (((Re >= 2500))) then % Testing a nested if segment in a subroutine

44 f = 16.0 * Re ^ (-0.4)

45 end

46 if (Re) then % testing a logical statement

47 if (-Re) then % testing a logical statement

48 if (L == 1) then

49 f = 0.001

50 elseif (L == 2) then

51 f = 0.002

52 elseif (L == 3) then

53 f = 0.003

54 elseif (L == 4) then

55 f = 0.004

56 elseif (L == 5) then

57 f = 0.06 * Re ^ (-0.4)

58 elseif (L == 6) then

59 f = 0.006

60 else

61 f = 0.007

62 end if

63 end

64 end

65

66 L = 4 # Reset L

67

68 i = 1

69 while (i < 2*L) then % testing a while loop segment

70 f = f + 0.01

71 Re = Re + 0.01

72 i = i + 1

73 end

74 end subroutine

 114

Output
FINAL VALUES OF VARIABLES

 ==========================
 Logical Variables 0

 Integer2 Variables 0

 Integer Variables 0
 Real Variables 7

 rho = 1.050000

 v = 12.20000
 l = 5.000000

 mu = 8.5000000E-05

 re = 105.0700
 f = 7.9325572E-02

 i = 8.0000000E+00

 115

Sample Problem 7.

This script is used to illustrate the use of array declaration and the use of arrays within

expressions. This program is part of a model which computes the aerodynamic

characteristics of an aircraft fuselage. This program is also useful for demonstrating the

use of arrays in an iSCRIPT code.

Model

 jjicbik

jjicb

V

S

jj

ref

22 ,2log

122 ,2log

856

325

0

 65.0258.2

10

16.1

053.1

sup_

053.1

_

144.01Relog

454.0

62.44Re

21.38Re

Re

M
C

M
k

l

k

l

UL

fuselage

fuselagef

cutoff

subcutoff

fuselage

d

l
f

S
d

S
A

fuselage

ref

ref

3048.0

/294

5.5

83.3
/294

9.20
max

fuselage

ref

wet

fd

fuselage

FF
S

S
CC

f

f
FF

fuselage

fuselagefuselage

fuselage

fuselage

0

3 400

60
1

 116

Input: File equations9.isc
1 program main

2

3 icount, ik, jj, kk as integer

4

5 Sref,Wo,l,k,Swet_fuselage,alt,mu,rho,R_fuselage,R_cutoff_sub,Cf_fuselage,Amax,d,f_fuselage,R_cutoff_sup as real

6 FF_fuselage,Cdo_fuselage,V,M as real

7

8 iunit, ifile, i, j as integer

9

10 blogic(3,2),brun as logical

11

12 lexist,lrun as logical

13

14 il as integer*2

15 j3,j4 as integer*2

16

17 rlong, rlonger as double

18 rnumber, rnumb, rexp as double

19

20

21 # ModelEquations

22 #function Cdo_sup = Cdo_Sup

23 #%this code uses the component built method for supersonics guiven by Raymer

24

25 Sref = 325;

26 V = 856;

27 blogic(2,2+2*jj) = 1

28 ik = blogic(2,4+2*jj)

29 Swet_fuselage = 588;

30

31 #fuselage

32

33 Wo = 24000;

34 l = 45*0.3048; #%a * Wo^c * 0.3048

35 k = 0.052 * 10^(-5); #%for smooth composite

36

37 alt = 1800;

38 mu = 0.00008;

39 rho = 1.25;

40 M = 0.85;

41

42 R_fuselage = rho * V * l / mu;

43

44 R_cutoff_sub = 38.21*(l/k)^1.053; #%eq 12.28 Raymer

45 R_cutoff_sup = 44.62*(l/k)^1.053*(M)^1.16; #%eq 12.29 Raymer

46 Cf_fuselage = 0.454 / ((log10(R_fuselage))^2.58 * (1+0.144*(M)^2)^0.65);

47

48 Amax = 20.9/(294/Sref) - 3.83;

49 d = 5.5/(294/Sref); #%sqrt(4/pi*Amax);

50 f_fuselage = l/(0.3048*d);

51 FF_fuselage = (1 + 60/f_fuselage^3 + f_fuselage / 400) ;

52

53 Cdo_fuselage = Cf_fuselage * Swet_fuselage / Sref * FF_fuselage ;

54

55 end program

 117

Output
FINAL VALUES OF VARIABLES

 ==========================
Logical Variables 4

 blogic(3;2) = F F F T F F

 brun = F
 lexist = F

 lrun = F

 Integer2 Variables 3
 il = 0

 j3 = 0

 j4 = 0
 Integer Variables 8

 icount = 0

 ik = 1
 jj = 0

 kk = 0

 iunit = 0
 ifile = 0

 i = 0

 j = 0
 Real Variables 19

 Sref = 325.0000

 Wo = 24000.00
 l = 13.71600

 k = 5.2000001E-07
 Swet_fuselage = 588.0000

 alt = 1800.000

 mu = 7.9999998E-05
 rho = 1.250000

 R_fuselage = 1.8345150E+08

 R_cutoff_sub = 2.4930214E+09
 Cf_fuselage = 1.8315958E-03

 Amax = 19.27374

 d = 6.079932
 f_fuselage = 7.401399

 R_cutoff_sup = 2.4110405E+09

 FF_fuselage = 1.166486

 Cdo_fuselage = 3.8654767E-03

 V = 856.0000

 M = 0.8500000
 Double Variables 5

 rlong = 0.000000000000000E+000

 rlonger = 0.000000000000000E+000
 rnumber = 0.000000000000000E+000

 rnumb = 0.000000000000000E+000

 rexp = 0.000000000000000E+000

 118

Sample Problem 8.

This script was derived from an old FORTRAN code to calculate friction factor. The

script uses expressions for Darcy-Weisbach, Colebrook, or Churchill equations

depending on Reynolds number calculated from the input. The Colebrook equations

require an iterative condition to obtain convergence based on a convergence criterion.

The output was compared to that of the equivalent FORTRAN program.

Model

UL
Re

Input:

File: equations13.isc

(The input file is not reproduced here

but can be obtained directly from the

/SampleScript folder of the iSCRIPT

installation).

Output:
FINAL VALUES OF VARIABLES

 ==========================
 Logical Variables 0

 Integer2 Variables 0

 Integer Variables 5
 niter = 0

 iter = 3

 ilam = 2
 ierr = 0

 nitre = 200

 Real Variables 32
diam = 1.000000000000000E-002

 rey = 659800.000000000

 fric = 3.794308979507086E-002
 fric2 = 3.804064733943083E-002

 fric3 = 9.699909063352531E-005

 friction = 3.794308979507086E-002
 rougha = 1.000000000000000E-004

 eps = 1.000000000000000E-004

 rselect = 1.000000000000000E-004
 doveps = 100.000000000000

 epsovd = 1.000000000000000E-002

 119

 fac1 = 5.14000000000000

 fac2 = 1285.22349993048
 fac3 = 1.00723609551218

 fac4 = 6.262561683476402E-003

 fac5 = 5.13373743831652
 fac6 = 0.194789860606491

 fac7 = 112.286369433646

 fac8 = 135.300985397874
 fac9 = 15192.4564311220

 deltaf = 2.070842958548824E-011

 depst = 1.000000000000000E-004
 g = 3.794308979509621E-002

 r = -2.073378274625171E-011

 small2 = 1.000000000000000E-009
 forlog = 10.0000000000000

 fsuggest = 3.794308979507086E-002

 drdf = 1.00122429181116
 flowleft = 4.000000000000000E-004

 flowmid = 2.000000000000000E-004

 flowmid2 = 5.000000000000000E-005

 enorm = 2.978714945569056E-019

 Double Variables 0

FORTRAN program
Results from FORTRAN execution of moodytest.for

 ==

 friction= 3.794308979507086E-002
 fric= 3.794308979507086E-002

 fric2= 3.804064733943083E-002

 fric3= 9.699909063352531E-005
 ilam= 2

 rey= 659800.000000000

 120

Sample Problem 9.

This script was used to illustrate the use of the natural recursive characteristics of

iSCRIPT functions. The script is used to calculate the factorial of a number. The factorial

of 4 was computed.

Model

1!0

12)...1(!

 nnn

Input:

File: equations6kk.isc
 # Recursice function test using the factorial of a number

 program

 rnumber, rfactorial as integer

 # Initial Values

 rnumber = 4

 # Models

 rfactorial = FACTORIAL(rnumber)

 end program

 # Recursive calculation of the factorial of a number
 Function FACTORIAL(n)

 n, rn as integer

 FACTORIAL as integer
 if n == 0

 rn = 1

 elseif n == 1
 rn = 1

 else

 rn = n * FACTORIAL(n-1)
 end if

 FACTORIAL = rn

 return
 End Function FACTORIAL

Output:
FINAL VALUES OF VARIABLES

 ==========================
 Logical Variables 0

 Integer2 Variables 0

 Integer Variables 2
 rnumber = 4

 rfactorial = 24

 Real Variables 0
 Double Variables 0

 121

Sample Problem 10.

This script was used to illustrate the use of the passing of literal valued arguments and

expression arguments to functions. In addition, the syntax function calls within functions

are illustrated. The model is the same as in Sample Problem 6.

Input:

File: equations6m.isc

(The input file is not reproduced here but can be obtained directly from the

/SampleScript folder of the iSCRIPT installation).

Output:
FINAL VALUES OF VARIABLES

 ==========================

Logical Variables 0

 Integer2 Variables 0

 Integer Variables 0
 Real Variables 7

rho = 1.05000000000000

 v = 12.2000000000000
 l = 5.00000000000000

 mu = 8.500000000000001E-005
 re = 105.000000000000

 f = 4.932557310067764E-002

 i = 0.000000000000000E+000
 Double Variables 0

 122

Sample Problem 12. MATLAB Compatibility

This script was used to illustrate compatibility with MATLAB matrix manipulation

features. The equivalent MATLAB file is matlaba1.m.

Model

 54321

54321

b

x

5

1i

iba

)(xsizez

5

1i

ixy

)min(xd

)max(xe

Input File: matlaba1.isc
i,y,x(5),b(5),z,a,c,d,e as integer

b = [1 2 3 4 5];
x(1)=1;

x(2)=2;

x(3)=3;
x(4)=4;

x(5)=5;

% Do add up all the elements of x, use this:
a = sum(b);

% which is better than this:

z = length(x);

for i=1:length(x)

 y = y+x(i);

end
%c = avg(x);

d = min(x);

e = max(x);

Output:
FINAL VALUES OF VARIABLES

 ==========================

Logical Variables 0
 Integer2 Variables 0

 Integer Variables 9
 i = 6

 y = 15

 x(5) = 1 2 3 4
 5

 b(5) = 1 2 3 4

 5
 z = 5

 a = 15

 c = 0
 d = 1

 e = 5

 Real Variables 0
 Double Variables 0

 123

 124

Sample Problem 13. MATLAB Compatibility

This script was used to illustrate compatibility with MATLAB matrix manipulation

features – in particular the contraction of matrix order. The equivalent MATLAB file is

matlaba10.m.

Model

 axyb

a ,y ,x

/

312

0

0

1

987

664

324

Input:

File: matlaba10.isc
x(3,3),y(3,1),a(1,3) as integer

b as real
x = [4, 2, 3; 4, 6, 6; 7, 8, 9];

y = [1, 0, 0];

a = [2; 1; 3];
b = (y / x) * a;

Output:
FINAL VALUES OF VARIABLES

 ==========================
Logical Variables 0

 Integer2 Variables 0
 Integer Variables 3

 x(3;3) = 4 2 3 4

 6 6 7 8 9
 y(3;1) = 1 0 0

 a(1;3) = 2 1 3

 Real Variables 1
 b = 0.0000000E+00

 Double Variables 0

 125

Sample Problem 14. MATLAB Compatibility

This script was used to illustrate compatibility with MATLAB matrix manipulation

features. The equivalent MATLAB file is matlaba70.m.

Model

xyxbxyz

b ,y ,x

/2

115

212

014

211

121

112

987

664

324

Input File: matlaba70.isc

i,x(3,3),y(3,3),b(3,3) as integer

z(3,3),a(3,3) as real
x = [4, 2, 3; 4, 6, 6; 7, 8, 9];

y = [2, 1, 1; 1, 2, 1; 1, 1, 2];

b = [4 1 0; 2 1 2; 5 1 1];
z = y*x + b*x + 2*y/x;

a = x + 2 * sin(y);

Output:
FINAL VALUES OF VARIABLES
 ==========================

Logical Variables 0
 Integer2 Variables 0

 Integer Variables 4

 i = 0
 x(3;3) = 4 2 3 4

 6 6 7 8 9

 y(3;3) = 2 1 1 1
 2 1 1 1 2

 b(3;3) = 4 1 0 2

 1 2 5 1 1
 Real Variables 2

 z(3;3) = 41.66667 35.00000 36.33333

 47.66667 54.00000 49.33333 50.33333 43.00000
 61.66667

 a(3;3) = 5.818595 3.682942 4.682942

 5.682942 7.818595 7.682942 8.682942 9.682942
 10.81859

 Double Variables 0

 126

 127

Sample Problem 15. MATLAB Compatibility

This script was used to illustrate compatibility with MATLAB function features –

including the management of function arguments and the use of multiple output

arguments. The model is the similar to that in Sample Problem 6.

Input:

File: matlaba14.isc

 128

Output:
FINAL VALUES OF VARIABLES

 ==========================
 Logical Variables 0

 Integer2 Variables 0

 Integer Variables 1
 initest3 = 5712

 Real Variables 9

 rho = 1.050000
 v = 1.7000000E-03

 L = 5.000000

 mu = 8.5000000E-05
 Re = 84.00000

 f = 0.0000000E+00

 i = 0.0000000E+00
 rtest1 = 17.00000

 rtest2 = 84.00000

 Double Variables 0

 129

Sample Problem 16. Multi-Source File projects

This script was used to illustrate the multi-source file project capabilities of iSCRIPT.

The model is the similar to that in Sample Problem 6.The source files include:

Project1a.isc

Project1b. isc

Project1c. isc

Project1d. isc.

All source files were listed in a single project file: project1.ipr. The source files could

also be individually entered at the command line.

Input:

File:project1.ipr

Output:

The output is similar to the Sample Problem 5.

 130

Sample Problem 17. Integration with a MATLAB program,

This solution consists of the following files:

PS_conv.m a MATLAB program that rates a low-bypass turbofan aircraft

engine. The input to the program includes the altitude, Mach

number etc. This program reads the input from a file PS_input.txt.

The output from the program includes several variables including

the thrust, fuel consumption etc. The output from the program is

written to a file PS_output.txt.

ata.ipr an iSCRIPT project file containing three files main.isc,

ps_component.isc, ps_setting.isc. These files are described below.

Main.isc a main program defining two components – PS_setting and

PS_Component. PS_Setting simply sets the conditions for

computing (rating) the aircraft engine.

PS_component.isc an iSCRIPT component model file. This model file includes

commands to execute the MATLAB model. An input file is

created for the MATLAB program and the output from the

MATLAB is read. The output is further used to compute certain

quantities including the total exergy destruction in the engine.

Procedures for Running this Solution

1. Run the MATLAB program in MATLAB to check the model of the aircraft

engine.

2. Compile the MATLAB program into an executable. This step includes issuing

the command mcc –m PS_conv. An executable is generated names

PS_conv.exe. This executable was renamed to PS.exe.

3. Run iSCRIPT. Enter the project file ata.ipr at the iSCript prompt

4. View the results.

5. Note that the model may be further optimized on the high-level using the

optimization procedures present in the iSCRIPT program.

 131

Sample Problem 18. Test of Input/Output and Directory Management

Commands

This sample problem file illustrates the various input/output and directory manipulation

commands. The file is equations24.isc and is listed below. The model and output is the

same as that in Sample Problem 1.

 # Test of open/close read/write"

 alt, T, P, mu, rho, alt_1, var2, var4 as real

 imyopen, imyoout, iout, irun as integer

 var3(3) as real

 imyopen = open('input.txt', 'rt+')

 call write(6,'File input file opened on unit: ', imyopen)

 imyoout = open('output.txt', 'wt+')

 call write(6,'File opened output file on unit: ', imyoout)

 call write(6) 'Press any key to continue'

 call read(6)

 call read(imyopen,'*%g6') alt_1

 var3 = fscanf(imyopen, *)

 write 'Enter a value for var4'

 call read (6) var4

 alt = alt_1 * 0.3048

 T = (2.29013E-12*alt*alt*alt+8.60446E-08*alt*alt-6.82246E-

03*alt+3.18150E+02)

 P = 101325*(9.63714E-19*alt*alt*alt*alt - 1.18488E-13*alt*alt*alt)

 P = P + 101325*(5.52991E-9*alt*alt- 1.18225E-4*alt + 1)

 mu = (1.61988E-7*T*T*T-4.66143E-4*T*T+7.25242E-1*T+4.20454)*1e-7

 rho = P/287/T

 irun = execute('PS.exe')

 if (irun == -1) then

 call write(imyoout, *) 'Executable did not run or could not be located'

 end if

 call write(imyoout) 'My current directory is:', currentdirectory

 changedirectory('D:\alabi')

 call write(imyoout) 'My new directory is:', currentdirectory

 changedirectory('')

 call write(imyoout) 'My final directory is:', currentdirectory

 call write(imyoout,*)

 call fprintf(imyoout,'')

 132

 call write(imyoout, 'rho = ', rho, ', T = ', T, ', P = ', P, ', mu = ', mu)

 call rewind(imyopen)

 call read(imyopen, *) var2

 call close(imyopen)

 call close(imyoout)

Instructions:

1. Run the above script.

2. Examine the output files and compare with the input I/O calls in the script as well

as the output of Sample Problem 1.

 133

Sample Problem 19. Executing an iSCRIPT program in Parallel

Any iSCRIPT program (that can run on a single processor computer) can execute in

parallel in a multi-processor environment. However, this example illustrates the use of

iSCRIPT in optimizing a problem is parallel.

This sample problem file contains a main program and a subroutine which evaluates a

model. The model is the Rastrigin equation as shown below.

)2cos2(cos1020)(21

2

2

2

1 xxxxxf

This function has several local minima making it difficult for a gradient-based procedure

to capture the actual minimum without the benefit of a good starting or guess value. The

actual minimum value is 0 and occurs at the values of (x1, x2) = (0,0).

Figure P19.1. Plot of the Rastrigin function.

The file is rastrigin.isc and is listed below.

This is the system program.

This program defines all components, subsystems, and systems

program main

 #global pi as double

 #pi = 4*atan(1.0)

Global minimum

 134

#.1 Create the components

#.2 Create the subsystems (One component, One subsystem, one system)

 # Create the entire system component and its variables

 CreateComponent(Rastrigin, Models_entire_system)

 CreateVariable(Rastrigin, y, double, 0,0, 1.0E14, 0.0, 0.0, $)

 CreateVariable(Rastrigin, x1, double, 0,0, 10.0, -10.0, 0.5, kg/s)

 CreateVariable(Rastrigin, x2, double, 0,0, 10.0, -10.0, 0.5, m2)

 AddObjective(Rastrigin, y, 0)

 AddVarObjective(Rastrigin, x1)

 AddVarObjective(Rastrigin, x2)

#.3 Evaluate the system at the initial conditions, then optimize

 #Rastrigin.Execute

 Global.maxPopulation = 4000

 Global.maxInitialEvaluations = 10000

 Global.maxGenerations = 200

 Global.optconvergencelimit = 1.0E-7

 Global.mutationfreq = 0.2

 Global.sampsizepervariable = 8000

 #Try

 Global.maxPopulation = 100

 Global.maxInitialEvaluations = 500

 Global.maxGenerations = 100

 Global.optconvergencelimit = 1.0E-7

 Global.mutationfreq = 0.2

 Global.sampsizepervariable = 200

 #Try

 Global.maxPopulation = 100

 Global.maxInitialEvaluations = 400

 Global.maxGenerations = 100

 Global.optconvergencelimit = 1.0E-7

 Global.mutationfreq = 0.2

 Global.sampsizepervariable = 100

 #Try

 Global.maxPopulation = 70

 Global.maxInitialEvaluations = 200

 Global.maxGenerations = 10

 135

 Global.optconvergencelimit = 1.0E-7

 Global.mutationfreq = 0.2

 Global.sampsizepervariable = 90

 Rastrigin.Optimize

end program

subroutine Rastrigin ()

#This subroutine is an execute model for entire subsystem (and system)

 x1, x2, pi As Double

 x1 = Rastrigin.x1

 x2 = Rastrigin.x2

 pi = 4*atan(1.0)

 #pi = 3.1415926536

 Rastrigin.y = 20.0 + x1*x1 + x2*x2 - 10*(cos(2*pi*x1) + cos(2*pi*x2))

end subroutine

Output

The output file again is outputscript.txt. The correct results were obtained in about 2.9

seconds on a Pentium workstation using only a population of 70 realizations.

Details of the optimization process are recorded in the file optimize.txt. The details

include the initial values of the optimization variables and the objective, the various

realizations of the system being evaluated, the array of viable systems or realizations

(population of individuals in genetic algorithm parlance) by generation or as the

optimization progresses, and the final results.

 136

References

1
Munoz, J. R., “A Decomposition Strategy Based on Thermoeconomic Isolation Applied to the Optimal

Synthesis/Design and Operation of an Advanced Fighter Aircraft System,” M.S. Thesis, Advisor: M. R.

von Spakovsky, Mechanical Engineering Dept., Virginia Polytechnic University, Blacksburg, VA,

February 2002.

2
Alabi, K., Ladeinde, F., von Spakovsky, M. R., Moorhouse, D., Camberos, J., “Assessing CFD Modeling

of Entropy Generation for the Air Frame Subsystem in an Integrated Aircraft Design/Synthesis Procedure,”

AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan 2006.

3
Molyneaux, A., “A Practical Evolutionary Method for the Multi-Objective Optimization of Complex

Energy Systems, including Drivetrains.” M.Sc. Thesis, Ecole Polytechnique Federale De Lausanne, EPFL,

2002.

4
Leyland G. B., “Multi-Objective Optimization Applied to Industrial Energy Problems,” Ph.D. Thesis,

Ecole Polytechnique Federale De Lausanne, EPFL, 2002.

5
Stoecker W. F., “Design of Thermal Systems,” Third Edition. McGraw Hill Book Company, 1989.

