Release Notes

INSTED CLOUD Ver. 8.2

TTC TECHNOLOGIES, INC.

August 30, 2016

Release Features

INSTED CLOUD Ver. 8.2

INSTED is your one-stop software suite for empirical thermal and hydraulic analysis of engineering systems and components, with a focus on finned and un-finned heat exchangers, flow over tube banks, performance of isolated fins and fin arrays, analysis of heat conduction in composite solids, internal and external flow and heat transfer, performance analysis of flows in piping systems, design analysis of pipe flows, and power calculations for pump selection. INSTED calculations are very fast, leading to fast turnaround in the analysis cycle. The interface is easy and fun to use. With the CLOUD deployment of INSTED, you can carry out your thermal-hydraulic analysis of heat exchangers and other engineering systems/components anytime, anywhere, and even on your smartphones or tablets.

The most recent version of INSTED (Ver. 8.2) includes significant enhancements, changes, and bug fixes, to further improve your experience on INSTED CLOUD. The new features include the following:

Improved Plate-Fin Solver

- Advanced "Genetic Algorithm" (GA) has been implemented for the sizing and optimization modules, which greatly improves the calculation speed and provides more accurate results.
- Instead of returning only one design realization as in the previous version of INSTED, the platefin sizing calculation now provides you with a list of feasible design realizations.
- The Optimization solver now allows the fin geometries (shape, profile, fin height, and fin pitch) to be design variables when searching for optimum design.
- More objective functions and design constraints are now available for the Plate-Fin optimization task.
- Additional inputs (end plate thickness, side bar width, and height) are now allowed as part of the Plate-Fin HEX geometry.
- Additional outputs (coefficient of performance, mean stream temperature, mean fluid density, mean fluid specific heat, etc.) are now provided during Plate-Fin Rating, Multiple-Rating, Sizing, and Optimization analyses.

New Features in Plate-Fin

- In "Preference", you can now "Turn Off" and "Turn On" the automatic unit conversion feature for all the input textboxes.
- In the previous version of INSTED, you could choose the default unit system in "Preference" to either "SI" or "British." In this new version, an option "Custom" has been added to allow you to specify the default units for each kind of variable (temperature, length, power, etc.)
- In addition to the "ALPEMA sheet", a new downloadable Excel file is now available for you to export more output data from Plate-Fin Rating, Multiple-Rating, and Sizing and Optimization realizations.
- Both the ALPEMA sheet and the downloadable Excel file can be generated for different unit systems (SI/British/Custom).
- You now have the option of showing the data for only one stream or for both streams when plotting the rating results.

- You now have the option of reversing the plotting direction for the data in one stream when plotting the rating results. This is especially useful for the parallel counter-flow case, where you may want to compare the hot/cold flow curves point-by-point.
- In "Preference," you now have the option of specifying the precision and format of the output.

More details on the release features can be found in the following sections.

New Features

Many new features have been added to INSTED in this new version.

#1. New Plate-Fin Sizing Solver and Re-Designed Interface

- (1) A new, more powerful Plate-Fin Sizing solver based on the Genetic Algorithm (GA) has been deployed. The new solver comes with a huge performance boost (faster calculation) and is more stable and robust compared with the previous version.
- (2) The following new Plate-Fin "Sizing Criteria" have been added:
 - a. Fix or unfix the total number of plates
 - b. Fix or unfix the fin height/pitch
 - c. Fix the overall effectiveness to a value
 - d. Fix the overall coefficient of performance (COP) to a value

roject Name:			
Choose a Reference Rating Project: Please choose View Details Single phase calculation only	Fluid A		ADDANG ADDANG FLU
Design Target: Target Heat Transfer Rate:	/. Design Pa	rameters:	
Sizing Criteria: 👩	Difference b	etween sizing and r	ating:
Sizing Criteria: Sizing Crite	Difference b	etween sizing and r Plate bright Plate With No. of How Pass (Iot) No. of How Pass (Iot) No. of How Pass (Iot) Mass How Rate (Iot) Fin Shape/Profile (Iot) Fin Height/Plath (Iot) Fin Height/Plath (Iot)	ating: Sizing Target Heat Transfer Rate

(3) In the previous version of INSTED, sizing results only showed one design realization. Similar to optimization, sizing results now display a list of feasible design realizations. Some of the parameters from the results of sizing are shown for each realization.

ľ	oose	e One	e Reali:	zation	for Rati	ng:						
		No.	Plates	N _{p,hot}	N _{p,cold}	L in ▼	W in ▼	M _{hot} Ib/s ▼	M _{cold} Ib/s ▼	∆P _{hot} psi ▼	∆P _{cold} psi ▼	
ſ	\bigcirc	1	952	2	2	41.010628307	144.077660709	53.50094801	45.311861921	4.4029786	4.204500927	1
	\bigcirc	2	880	2	2	55.431298268	158.556630079	42.81759734	54.049252559	4.160612157	4.363647361	1
	\bigcirc	3	912	2	2	60.007544449	145.500297362	41.485190428	69.61434695	4.62982441	4.765781722	1
	\bigcirc	4	864	2	2	73.494174685	167.835580039	41.607610666	70.998387191	4.989606113	4.67136593	1
	\bigcirc	5	888	2	2	73.494174685	167.835580039	41.607610666	70.998387191	4.790505296	4.512925046	1
	\bigcirc	6	910	2	2	73.908308976	165.470632008	41.956567938	73.457240579	4.81939857	4.484091075	1
	\bigcirc	7	912	2	2	73.908308976	165.470632008	41.956567938	73.457240579	4.78802151	4.459336447	1
	\bigcirc	8	912	2	2	73.494174685	167.835580039	41.607610666	70.998387191	4.604395325	4.363875842	1
	\bigcirc	9	936	2	2	60.919692165	217.531111614	44.153045079	47.406955307	2.73007965	4.167521389	1
	\bigcirc	10	912	2	2	80.984238189	177.934929961	42.367251056	57.430565556	4.777989277	3.134441591	1
	\bigcirc	11	926	2	2	67.683026575	214.64760185	57.221413599	43.72744434	4.633300894	3.30692843	1
	•											•

Note that you can click the link-buttons in the "Fin_{hot}" and "Fin_{cold}" columns to view the details of the fin geometry in a realization.

	Q Btuh ▼	A m² ▼	Weight kg 🔻		СОР	Fin _{hot}	Fin _{cold}	-
35	1.082137e+7	5.794836e+6	9700.521359594	0.974179612	2.34311861	rectangular/herringbone	rectangular/offset-strip	
56	1.092846e+7	6.490619e+6	10865.257806543	0.980432836	2.517564988	rectangular/herringbone	rectangular/offset-strip	
34	1.096846e+7	6.67357e+6	11171.515896817	0.957339944	2.364477016	rectangular/herringbone	rectangular/offset-strip	
55	1.093873e+7	7.041709e+6	11787.779695776	0.981353902	2.83668133	rectangular	rectangular/offset-strip	
56	1.098639e+7	7.220583e+6	12087.213921147	0.958904876	2.65682603	rectangular/herringbone	rectangular/offset-strip	
9 9	1.111576e+7	7.334074e+6	12277.196703331	0.966957432	2.492038543	rectangular/herringbone	rectangular/offset-strip	
38	1.079485e+7	7.467511e+6	12500.569272916	0.986005005	2.607457087	rectangular/herringbone	rectangular/offset-strip	
37	1.094739e+7	7.562183e+6	12659.050368942	0.982130629	3.148480834	rectangular/herringbone	rectangular/offset-strip	
54	1.100153e+7	7.73113e+6	12941.86541052	0.960225896	2.939054223	rectangular/herringbone	rectangular/offset-strip	
33	1.079871e+7	7.943878e+6	13298.003985129	0.969714079	2.886907228	rectangular/herringbone	rectangular/offset-strip	
78	1.070205e+7	8.282991e+6	13865.678453262	0.992038319	2.392019775	rectangular/herringbone	rectangular/offset-strip	
4							Þ	

(4) You can choose one realization and click the "Rate Selected Realization" button to view the details of this realization.

Sizing Result:			Detail Result:		
Plate Length:	86.390634016	in 🔻	Hot Flow Cold Flow	Overall	
Plate Width:	267.10869122	in 🔻	Inlet Temperature:	860.017999931	°F
Hot Flow Rate:	42.524334845	lb/s ▼	Outlet Temperature:	576.302956537	°F
Cold Flow Rate:	56.637630763	lb/s ▼	Pressure Loss:	1.279794668	psi
Total No. of Plates:	778		Mass Flow Rate:	47.432502282	lb/s
	2		Mass Flux:	0.583164922	lb/(s·ft²)
No. of Hot Passes:	2		Flow Velocity:	17.298900066	ft/s
No. of Cold Passes:	2		Fouling Resistance:	0.	ft²·s·°F/btu
Hot Fin Shape:	rectangular		Equivalent Diameter:	0.109251969	in
Hot Fin Profile:	herringbone		Reynolds Number:	246.910876643	
Hot Fin Efficiency:	0.673977058		Heat Coefficient:	39.009512094	btu/(h·ft²·°F)
Hot Fin Height	0 224409449	in 🔻	Effective hA:	7398.971823643	btu/(h·°F
			Colburn Factor j:	0.056665018	
Hot Fin Pitch:	0.078740157	in 🔻	Friction Factor f:	0.305221458	
Hot Fin Thickness:	0.005905512	in 🔻	Fin Snape:	rectangular	
Hot Fin Wavelength:	0.1	in 🔻	Fin Efficiency:	0.673977058	
Hot Fin Wave Amplitude	0.02	in 🔻	Fin Height:	0.0057	m
Cold Fin Shape:	rectangular		Fin Pitch:	0.078740157	in
Cold Ein Brofilou	offect-strip		Fin Thickness:	0.005905512	in
cold Fill Frome.	onset-strip		Fin Wavelength:	0.1	in
Cold Fin Efficiency:	0.633649816		Fin Wave Amplitude:	0.02	in
Cold Fin Height:	0.224409449	in 🔻	Flow Length:	86.390634016	in
Cold Fin Pitch:	0.078740157	in 🔻	Flow Width:	133.554345591	in
Cold Fin Thickness:	0.005905512	in 🔻	Power:	1.075464e+6	Btu/h
Cold Fin Offset Pitch	0.03	in T	Mean Temperature:	718.160478233	°F
		Dhulle T	Mean Density:	0.033711099	lb/ft ³
Heat Iransfer Rate:	1.0912/9e+/	Blu/n •	Mean Specific Heat:	0.25317665	Btu/(lb·°F
Heat Transfer Area:	8.953367e+6	in² ▼	Mean Viscosity:	2.150301e-5	lb/(ft·s)
Hot Pressure Loss:	3.56482239	psi 🔻	Mean Conductivity:	0.028889466	btu/(h·ft·°F)
Cold Pressure Loss:	5.220433667	psi 🔻	Mean Heat Capacity:	43231.687401343	btu/(h·°F
Operating Weight:	14987.884011391	lb 🔻	Mean Prandtl Number:	0.6784	
	0.07764444		Mean Nusselt Number:	12.293894548	
Emectiveness:	0.977641181		Free Flow Area:	10500.467239134	in ²

#2. New Plate-Fin Optimization Solver and Re-Designed Interface

- (1) The new GA- based optimization module in INSTED shows a huge performance boost (faster calculation); it is more stable and robust compared to the previous version of the solver.
- (2) New "Objective Functions" have been added:
 - a. Minimum heat transfer area
 - b. Minimum number of plates
 - c. Maximum effectiveness
 - d. Maximum COP
- (3) Fin geometry/size is now allowed to be a design variable of the optimization task. The following are design variables in the search for an optimum solution:
 - a. Plate height
 - b. Plate width
 - c. Total number of plates
 - d. Number of flow passes (hot & cold)
 - e. Mass flow rate (hot & cold)
 - f. Fin shape (frontal) (hot & cold)
 - g. Fin profile (flow direction) (hot & cold)
 - h. Fin height/pitch (hot & cold)
- (4) The following new Plate-Fin "Optimization Constraints" have been added:
 - a. Fix or unfix the total number of plates
 - b. Fix or unfix the fin height/pitch
 - c. Fix or unfix the fin shape
 - d. Fix or unfix the fin profile
 - e. Fix the overall effectiveness to a value
 - f. Fix the overall coefficient of performance (COP) to a value

Note that, during the optimization process, the overall heat transfer rate is implicitly fixed to the value of the reference project.

(5) When the calculations have been completed, a list of feasible design realizations is displayed. Note that the list is sorted consistent with the objective functions, with the "best" being on top of the list.

		Plates	N _{p,hot}	N _{p,cold}	L in ▼	W in ▼	M _{hot} Ib/s T	M _{cold} Ib/s ▼	∆P _{hot} psi ▼	ΔP _{cold} psi ▼	Ì
0	1 best	300	1	1	35.433070866	70.866141732	55.997414595	55.115565546	4.947965659	2.928374806	
0	2	300	1	1	35.433070866	70.866141732	44.745083108	117.795160556	1.230086033	2.239712926	
0	3	300	1	1	35.433070866	70.866141732	134.841759406	44.920528161	5.04324024	0.454661314	
0	4	300	1	1	35.433070866	70.866141732	56.530033294	62.748596201	0.64162514	1.003774558	
C	5	300	1	1	35.433070866	70.866141732	48.248281566	94.583077482	0.610361269	1.692361464	
)	6	300	1	1	35.433070866	70.866141732	116.245603536	44.890449013	4.166432636	0.454183812	l
C	7	300	1	1	35.433070866	70.866141732	79.648883097	48.285119719	1.759718556	0.719716006	
	8	300	1	1	35.433070866	70.866141732	106.706440415	46.701473347	2.792845367	0.4832574	
C	9	300	1	1	35.433070866	70.866141732	48.650016624	87.726135512	0.612668187	1.300464599	
)	10	300	1	1	35.433070866	70.866141732	110.411047752	46.434287684	2.94765836	0.478926869	
C	11	300	1	1	35.433070866	70.866141732	78.812274935	50.085327542	1.73063635	0.753928192	
ī										•	

(5) You can choose one realization and click the "Rate Selected Realization" button to view details of this design realization and carry out a rating analysis on it.

Optimization Result.				Detail hest	iit.			
Plate Length:	35.433070866	in	•	Hot Flow	Cold Flow	Overall		
Plate Width:	70.866141732	in	•	Inlet Tempe	rature:	860.017999	931	°F
Hot Flow Bate:	55,997414595	lb/s	•	Outlet Temp	erature:	636.918926	878	۴
		lle /e		Pressure Lo	ISS:	4.94796565	9	psi
Cold Flow Rate:	55.115565546	ID/S	-	Mass Flow	Rate:	55.9974145	95	lb/s
Total No. of Plates:	300			Mass Flux:		3.75318020	3	lb/(s·ft²)
No. of Hot Passes:	1			Flow Velocit	iy:	111.3336661	158	ft/s
No. of Cold Passes:	1			Fouling Res	istance:	0.		ft²·s·°F/btu
Hot Fin Shape:	wavy			Equivalent [Diameter:	0.10813330	7	in
Hat fin Drafila	, hewinghene			Reynolds N	umber:	1572.81758	6642	
not fin Fronie:	nerringbone			Heat Coeffic	cient:	44.6281400	27	btu/(h·ft²·°F)
Hot Fin Height:	0.224409449	in	•	Effective hA	:	300.3211098	84	btu/(h·°F)
Hot Fin Pitch:	0.078740157	in	Y	Colburn Fac	ctor j:	0.01007268	6	
Hot Fin Thickness:	0.005905512	in	•	Friction Fac	tor f:	0.05471440	3	
Hot Fin Wavelength:	0.393700787	in	•	Fin Snape:		wavy		
Hot Fin Ways Amplitude	0 119110226	in	Ţ	Fin Efficienc		0.65196614	1	
not Fill Wave Amplitude	0.110110230			Fin Height:	<i>,</i> ,,,	0.22440944	9	in
Cold Fin Shape:	rectangular			Fin Pitch:		0.07874015	7	in
Cold Fin Profile:	herringbone			Fin Thickne	SS:	0.00590551	2	in
Cold Fin Height:	0.224409449	in	•	Fin Waveler	ngth:	0.39370078	7	in
Cold Fin Pitch:	0.078740157	in	•	Fin Wave A	mplitude:	0.118110236	5	in
Cold Fig Thiskness	0.005005512	in		Flow Length	1:	35.4330708	66	in
Cold Fin Thickness:	0.003903512			Flow Width:		70.8661417	32	in
Cold Fin Wavelength:	0.393700787	in	•	Power:		5.475361e+	6	Btu/h
Cold Fin Wave Amplitude:	0.118110236	in	•	Mean Temp	erature:	748.468463	405	۴
Heat Transfer Rate:	1.138654e+7	Btu/h	•	Mean Dens	ity:	0.033711099	9	lb/ft ³
Heat Transfer Areas	7 533015e+5	in ²	T	Mean Speci	fic Heat:	0.25317665		Btu/(lb·°F)
fieat fransfer Area.	7.3330132+3			Mean Visco	sity:	2.150301e-5	5	lb/(ft·s)
Hot Pressure Loss:	4.947965659	psi	•	Mean Cond	uctivity:	0.02888946	6	btu/(h·ft·°F)
Cold Pressure Loss:	2.928374806	psi	•	Mean Heat	Capacity:	51038.0562	38956	btu/(h·°F)
Operating Weight:	2522.04452149	lb	•	Mean Pranc	Itl Number:	0.67840008	3	
Effectiveness:	0.787043952			Mean Nuss	elt Number:	13.9205988	05	
Lineouveness.	0.707043552			Free Flow A	rea:	2148.47867	1957	in²
COP:	1.953180058			•				

▼

#3. Turn On/Off Automatic Unit Conversion

In the "Preference" tab, you now have the option of turning On/Off the Automatic Unit Conversion feature when entering values in INSTED.

ser Preferences:			
Choose default unit system:	Custom	ized ▼	Customize Preferred Units
Automatic input unit conversion:	Off	۷	
Format Numbers:			
The exponent value, beneath which scientific notation occurs:	3	T	
The exponent value, above which scientific notation occurs:	5	۷	
Maximum number of digits for scientific notation:	7	T	
Maximum number of digits for non-scientific notation:	9	¥	
Default Formatting			

	Nhon automati	e unit conversion	a is off		
Mhan automatic unit conversion is off	when automati	c unit conversior	I IS OT		

#4. Customizable Preferred Units

In the "Preference" tab, in addition to allowing the use of "SI" or "British" as the default unit system, you can now choose "Customized" as a new option. Click "Customize Preferred Units" to specify the preferred units for each type of variable.

r Preferences:	
- Units:	
Choose default unit system:	Customized Customize Preferred Units
	0#
Automatic input unit conversion:	
	—
art Page 🗴 Preferences 🗴 🚘 Preferred Units 🗡	
lease set preferred units:	
- Preferred Units	
Area:	inch ² ▼
Density:	lb/ft³ ▼
Dynamic Viscosity:	lb/(ft⋅h) ▼
Effective hA, Heat Capacity:	btu/(h·°F) ▼
Energy:	lbf-in ▼
Energy Flux:	btu/(h·ft²) ▼
Enthalpy, Specific Energy, Heat of Vaporization:	lbf-ft/lb ▼
Fouling Factor:	ft²⋅s·°F/btu ▼
Heat Transfer (Film) Coefficient:	btu/(h·ft².°F) ▼
Length:	in 🔻
Mass Flowrate:	lb/h ▼
Mass Flux:	lb/(h·ft²) ▼
Power:	J/s ▼
Pressure:	atm 🔻
Specific Heat, Entropy, Gas Constant:	Btu/(lb·°F) ▼
Surface Tension:	lbf/in ▼
Temperature:	°R 🔻
Thermal Conductivity:	cal/(s·cm·°C) ▼
Thermal Expansion Coefficient:	1/°R ▼
Thermal Diffusivity, Kinetic Viscosity:	in²/s ▼
Thermal Resistance:	°F∙s/btu ▼
Velocity:	mi/h ▼
Volume Flow Rate:	in³/h ▼
	1/ft ▼
Fin Density, Wave Number:	

#5. Export Rating/Multiple-Rating/Sizing/Optimization Data into Excel

Selected Plate-Fin Rating, Multiple-Rating, and Sizing and Optimization realization data can now be exported into an Excel file by clicking

- "Download Rating Data" in Plate-Fin rating
- "Download Multiple Rating Data" in Plate-Fin multiple-ratings
- "Download Realization Data" in Plate-Fin sizing and optimization

Cold Fin Pitch:	0.078740157	in 🔻	Power:	1.274614e+6	Btu/h
Cold Po intrikings CT	Operent sign i 7	ation	Mean Temperature:	717.350004228	*F
Jizing/	Optimiz	ation	Mean Density:	0.033711099	Ib/ft ^a
Cold Fin Offset Pitch:	0.03	in •	Mean Specific Heat:	0.25317665	Btu/(Ib.°F)
Heat Transfer Rate:	1.105383e+7	Btu/h 🔻	Mean Viscosity:	2.150301e-5	lb/(ft-s)
Heat Transfer Area:	5.658413e+6	in ² . •	Mean Conductivity:	0.028889466	btu/(h·ft·°F)
Hot Pressure Loss:	4.206216756	psi 🔻	Mean Heat Capacity:	38949.910115263	btu/(h *F)
Calif Branning Laws	4 004504634	nei 🔻	Mean Prandtl Number:	0.6784	
Cold Pressure Loss:	4.034334024	par -	Mean Nusselt Number:	13.96742699	
Operating Weight:	9472.14926845	lb 🔻	Free Flow Area:	8169.893936388	in ²
Effectiveness:	0.985402547		Heat Transfer Area:	5.658413e+6	in²
COP:	2.649242418		4		
Save to a Penult	ar Pating Project		Download Paulinat	Ion Data	
oure to a reegon		<u>_</u>			

After these buttons have been clicked, a new window will pop-up in which you can choose the units you prefer when exporting data to Excel.

Download File	×
Which format to download?	
▼ Preferred Units	
Which format to download? Default (User Preferred) Default (User Preferred)	
SI Unit British Unit OK Cancel	

Excel file for plate-fin rating:

Excel file for plate-fin Multiple-Rating:

	A	В	С	D	E	F	G	н	1.1	J	K	L	Μ	N	0	Р	Q	R	
4			erforn	nance Re	quiremen		Operating conditions -Hot				perating co	nditions -Co	ld			HX core de	esign inpu	t í	
5	Design #	Description (for example, flow arrangement, multipassing, single/two	Q	∆p-hot	∆p-cold	Fluid type	Flow rate	Tin	Pin	Fluid type	Flow rate	Tin	Pin	t-sp	t-ep	w-sb-hot	h-sb-hot	w-sb-cold	-
6			[kW]	[kPa]	[kPa]	[-]	[lb/s]	[°F]	[psi]	[-]	[lb/s]	[°F]	[psi]	[in]	[in]	[in]	[in]	[in]	
7	#1: Hot flow mass flow rate = 1.975694609 [lb/s]	cross-flow, single banking					1.97569	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
8	#2: Hot flow mass flow rate = 1.9867177221 [lb/s]	cross-flow, single banking					1.98672	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
9	#3: Hot flow mass flow rate = 1.9977408352 [lb/s]	cross-flow, single banking					1.99774	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
10	#4: Hot flow mass flow rate = 2.0087639483 [lb/s]	cross-flow, single banking					2.00876	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
11	#5: Hot flow mass flow rate = 2.0197870614 [lb/s]	cross-flow, single banking					2.01979	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
12	#6: Hot flow mass flow rate = 2.0308101745 [lb/s]	cross-flow, single banking					2.03081	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
13	#7: Hot flow mass flow rate = 2.0418332876 [lb/s]	cross-flow, single banking					2.04183	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
14	#8: Hot flow mass flow rate = 2.0528564007 [lb/s]	cross-flow, single banking					2.05286	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
15	#9: Hot flow mass flow rate = 2.0638795138 [lb/s]	cross-flow, single banking					2.06388	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
16	#10: Hot flow mass flow rate = 2.0749026269 [lb/s]	cross-flow, single banking					2.0749	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
17	#11: Hot flow mass flow rate = 2.08592574 [lb/s]	cross-flow, single banking					2.08593	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
18	#12: Hot flow mass flow rate = 2.0969488531 [lb/s]	cross-flow, single banking					2.09695	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
19	#13: Hot flow mass flow rate = 2.1079719662 [lb/s]	cross-flow, single banking					2.10797	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
20	#14: Hot flow mass flow rate = 2.1189950793 [lb/s]	cross-flow, single banking					2.119	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
21	#15: Hot flow mass flow rate = 2.1300181924 [lb/s]	cross-flow, single banking					2.13002	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
22	#16: Hot flow mass flow rate = 2.1410413055 [lb/s]	cross-flow, single banking					2.14104	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
23	#17: Hot flow mass flow rate = 2.1520644186 [lb/s]	cross-flow, single banking					2.15206	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
24	#18: Hot flow mass flow rate = 2.1630875317 [lb/s]	cross-flow, single banking					2.16309	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
25	#19: Hot flow mass flow rate = 2.1741106448 [lb/s]	cross-flow, single banking					2.17411	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
26	#20: Hot flow mass flow rate = 2.1851337579 [lb/s]	cross-flow, single banking					2.18513	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
27	#21: Hot flow mass flow rate = 2.196156871 [lb/s]	cross-flow, single banking					2.19616	464.02	14.6959		1.829	39.218	14.696	0.0157	0.0157	0.1	0.1	0.25	
20																			

#6. New Inputs for Plate-Fin Geometry

- The "Bar Thickness" in the old version has been removed
- "End Plate Thickness" has been added. This value will affect the stack height and weight of the HEX
- "Bar Width" and "Bar Height" have been added into "Fin Properties", this allows you to set different values of side/separator bar width and height for different streams
- The value of "Bar Height" is allowed to be slightly different from the value of "Fin Height." If zero is input for "Bar Height," its value will automatically be set to be equal to "Fin Height."
- The value of "Bar Width' can be set to zero if the width of the side/separator bar is negligible.

Old version	New version
VI. Plate Properties: Plate Thickness: Bar Thickness: Plate Conductivity: Plate Density: but(hft"F) • Bar	VI. Plate Properties: Plate Thickness: in End Plate Thickness: in Plate Conductivity: btw(h.ft "F) Plate Density: btw(h.ft "F) End Plate Thickness: in Plate Density: ibft Ibft
III. Fin Properties: Fin Height (h'): t Fin Thickness (t): t Fin Pitch (p): t Fin Conductivity: btu(h:ft "F) • Fin Density: btu? Custom j/f data Use user-defined j/f data?	III. Fin Properties: Fin Height (h'): In ▼ Fin Thickness (t): In ▼ Fin Pitch (p): In ▼ Fin Conductivity: Bar Width (w _{sb}): In ▼ Bar Width (w _{sb}): In ▼ Bar Height (h _{sb}):
	Custom j/f data Use user-defined j/f data?

The dimensions of bar width (w_{sb}) and bar height (h_{sb}) are shown in the illustration of a fin below.

#7. Additional Outputs for Plate-Fin Calculations

The following data have been added to the Plate-Fin rating output results:

- Mean temperature (hot/cold)
- Mean density (hot/cold)
- Mean viscosity (hot/cold)
- Mean specific heat (hot/cold)
- Mean thermal conductivity (hot/cold)
- Mean Prandtl number (hot/cold)
- Mean Nusselt number (hot/cold)
- Heat transfer surface area (hot/cold)
- Free flow area (hot/cold)
- Coefficient of performance (COP)

Note that COP is defined as $COP = \frac{Overall Heat Transfer Rate}{Power_{hot}+Power_{cold}}$

Fin Height:	0.086	in 🔻
Fin Pitch:	0.054	in 🔻
Fin Thickness:	0.006	in 🔻
Fin Offset Pitch:	0.078070866	in 🔻
Flow Length:	2.25	in 🔻
Flow Width:	4.3125	in 🔻
Power:	8.875277345	Btu/h ▼
Mean Temperature:	23.074265811	°F▼
Mean Density:	112.370329037	lb/ft³ ▼
Mean Specific Heat:	0.210184389	Btu/(Ib·°F) ▼
Mean Viscosity:	0.003091057	lb/(ft·s) ▼
Mean Conductivity:	0.040445252	btu/(h·ft·°F) ▼
Mean Heat Capacity:	1751.566039145	btu/(h·°F) ▼
Mean Prandtl Number:	57.828566331	
Mean Nusselt Number:	22.497531161	
Free Flow Area:	3.066667183	in² ▼
Heat Transfer Area:	194.062500775	in² ▼
4		►

neal nansiel Alea.	400.0	
U:	425.473316688	btu/(h·ft².°F) ▼
UA:	1196.672503537	btu/(h·°F) ▼
Heat Flow Rate:	10468.929550324	Btu/h ▼
Ratio of Heat Capacity:	0.023829074	
Effectiveness:	0.712632467	
NTU:	33.848869	
COP:	18.728760058	
Empty Weight:	0.40281829	lb 🔻
Operating Weight:	0.873371113	lb ▼

#8. More Controls on Plotting the Curves of Rating Results

By clicking the "Plot Setting" button, you can

- Set units of the variables to be plotted
- Indicate whether to plot the graph for one or two streams
- Indicate the plotting direction for the streams

Plot Settings	×
Set Units of Plotting Variables	°F v
Choose Plotting Curves Plot Lines for :	hot & cold
Choose Plotting Direction Reverse plotting direction?	cold only
Close	

Note that, by default, the curves are plotted along the respective flow directions. "Reversing" the plotting direction is especially useful for parallel counter-flow HEX. By reversing the plotting direction of one stream, you can compare the data for the two streams point-by-point.

#9. Set the Precision and Formats of the Outputs

You can specify the precision and formats of the outputs in "Preference." The meaning of the settings is self-explanatory.

Start Page × Preferences ×		
User Preferences:		
Units:		
Choose default unit system:	Customized V	Customize Preferred Units
Automatic input unit conversion:	Off ▼	
Format Numbers:		
The exponent value, beneath which scientific notation occurs:	3 ▼	
The exponent value, above which scientific notation occurs:	5 ▼	
Maximum number of digits for scientific notation:	7 🔻	
Maximum number of digits for non-scientific notation:	9 🔻	
Defauit Formatting		
Save Close		