Release Notes

INSTED CLOUD Ver. 8.1

TTC TECHNOLOGIES, INC.

March 2, 2016

Release Features

INSTED CLOUD Ver. 8.1

INSTED is your one-stop software suite for empirical thermal and hydraulic analysis of engineering systems and components, with a focus on finned and un-finned heat exchangers, flow over tube banks, performance of isolated fins and fin arrays, analysis of heat conduction in composite solids, internal and external flow and heat transfer, performance analysis of flows in piping systems, design analysis of pipe flows, and power calculations for pump selection. INSTED calculations are very fast, leading to fast turnaround in the analysis cycle. The interface is easy and fun to use. With the CLOUD deployment of INSTED, you can carry out your thermal-hydraulic analysis of heat exchangers and other engineering systems/components anytime, anywhere, and even on your smartphones or tablets.

The most recent version of INSTED (Ver. 8.1) includes significant enhancements, changes, and bug fixes, to further improve your experience on INSTED CLOUD. The new features include the following:

Improved Plate-Fin Solver

- An option to use a "Bulk" or "Discrete" method for rating calculations is now available.
- "REFPROP" and "Custom Fluids" can now be used for "Bulk" calculations!
- Warning messages for temperatures that are outside the range of REFPROP support are now displayed.
- The search schemes in "Sizing" and "Optimization" calculations have been improved to reduce the incidence of "No Realization Found" situations.

Bugs Fixed in the Plate-Fin Module

- Can now pass back fluid properties from "REFPROP Tool" to "INSTED" when using the Internet Explorer browser.
- The "No Fluid Found" message displayed in certain Multiple Rating tasks has been been fixed.
- Fixed the bug relating to copying the plate-fin Sample Problem "Che.510 (with custom j/f data)" to user account.
- The "Lost Connection" warning message displayed after 20 minutes of inactivity, has been removed.

New Features in Plate-Fin

- The "Calculation Method" input tab has been added. You can now choose the "Default," "Bulk," or "Discrete" method for rating calculations.
- You can now plot the distribution of "Density," "Specific Heat," "Thermal Conductivity," and "Viscosity" along the streams for the rating projects.
- You can now save one of the "Multiple-Rating" calculation points into a separate, regular, rating project.
- You can now save a realization of the "Sizing" calculations into a separate, regular, rating project.
- You can now save a realization of the "Optimization" calculations into a separate, regular, rating project.

- You can now export an existing project into a plain XML text file and mail out to another INSTED user.
- You can now import an XML project file back to INSTED from another INSTED user.
- In "Project Management," you can now open an INSTED project directly by just clicking on the project name.

Improvements to the user interface (UI)

- In the "Recent Projects" list under "Start Page," if the project name is too long to fit into the edit box, by placing the mouse on the project's name, more text will automatically scroll from right to left, to show additional information.
- You can now choose "REFPROP" and "Custom Fluids" directly from the "Rating Details" tab.

Changes to Other Modules in INSTED

- The "Preliminary Design" task is now supported in the CLOUD version of the Shell and Tubes HEX.
- The "Length Calculation" task is now supported in the CLOUD version of the Concentric Tubes HEX.
- The "Multiple Rating" tasks task is now supported in the CLOUD version of the Plate-Frame HEX.
- The "Bulk/Discrete" options are now supported in the CLOUD version of the Shell & Tubes and Concentric Tubes HEXs.
- You can now plot the stream-wise distributions of "Density," "Specific Heat," "Thermal Conductivity," and "Viscosity" from the rating results in all HEX modules.
- You can now save a "Preliminary Design" realization into a regular rating project for the Shell & Tubes HEX.
- You can now save a "Length Calculation" result into a regular rating project for the Concentric Tubes HEX.
- You can now save one point of a "Multiple Rating" analysis into a regular rating project for Plate-Frame HEX.
- Additional warning/error messages have been added for the Plate-Frame solver.
- For all INSTED modules, you can now "Export"/"Import" an existing INSTED project in an XML file format to/from other INSTED users.

More details on the release features can be found in the following sections.

New Features

Many new features have been added to INSTED in this new version.

#1. You can now choose either "Bulk" or "Discrete" methods for rating calculations.

In the Bulk method, fluid properties are held constant. In the Discrete method, they are allowed to vary stream-wise, depending on the local temperature and pressure. These options can be accessed from the "Calculation Method" button.

_	Start Page 🙀 📄 Plate-Fin: Rating 🙀 Plate-Fin: Cal. Pa	arameters ×
Plate-Fin Heat Exchanger		
Create HEX Geometry		
Rate HEX	I. Calculation Method: 🕜	
Multiple Rating		
Sizing	Methods	
Optimization		
Shell & Tubes Heat Exchanger	 Default 	
Create HEX Geometry	O Bulk	Fluid A Fluid B
Rate HEX		
Preliminary Design	O Discrete	W L
Concentric Tubes Heat Exchanger		
Create HEX Geometry		
Rate HEX		
Length Calculation		
Plate-Frame Heat Exchanger	Back to the Project	

There are three available options:

- Default: INSTED will automatically choose the calculation method based on your input. If the calculation is single phase and fixed thermal-physical fluid properties are used for both hot and cold streams, the bulk calculation method will be chosen, otherwise the discrete method will be chosen.
- Bulk: In this method, the thermal-physical properties of the fluids will be fixed. If "REFPROP" or "Custom Fluid" is selected, the average temperature of the stream is used to obtain the constant thermal-physical properties.
- Discrete: In this method, the thermal-physical properties of the fluids will be allowed to vary with the local temperature of the streams.

Note that:

• The Bulk calculation method cannot be used if "two-phase" is selected for a rating calculation.

#2. You can now use REFPROP for single-phase rating calculations.

In previous versions of INSTED, REFPROP was used mainly for two-phase flows (boiling and condensation). In the new version, a "REFPROP Fluids" selection box is available for single phase calculations as well.

Plate-Fin Heat Exchanger S	Start Page \star 📄 Plate-F	in: Rating × Pla	ate-Fin: Cal. Param	neters ×
Create HEX Geometry				
Rate HEX Multiple Rating Sizing Optimization	I. Project Name:			
Spannzakkin Shell & Tubes Heat Exchanger Create HEX Geometry Rate HEX	II. Choose Heat Exchan	ger Geometry to R	ate: w Details	Fluid A Fluid B
Preliminary Design <u>Concentric Tubes Heat Exchanger</u> Create HEX Geometry Rate HEX Locate Celectrics	III. Flow Assignment: Fluid A is hot 	• Fluid B is hot	:	W W
Lengur Carculation <u>Plate-Frame Heat Exchanger</u> Create HEX Geometry Rate HEX	IV. Flow Direction: Co-Current	O Counter-Curr	rent	VII. Fluid Properties: * Hot Fluid Properties:
Multiple Rating Sizing Optimization Piping System	V. Two Phase Flow?	•		Fixed O Variable/Custom REFPROP Choose Hot Fluid: acetone Cold Fluid Properties:
Design & Rate Fin & Fin Array Thermal Analysis Heat Conduction	VI. Flow Conditions:	Hot Cold		Fixed Variable/Custom REFPROP Choose Cold Fluid: carbon dioxide
Thermal Analysis & Design	Inlet Flow Rate:		kg/s 🔻	
<u>Tube Banks</u> Thermal & Hydraulic Analysis Sample Problems 	Inlet Temperature: Inlet Pressure:		K T	
Custom Fluid Properties Project Management	Fouling Resistance:		m²K/W 🔻	
INSTED Database Unit Conversion Math Calculator	K-Factor Out			
Preferences				VIII. Calculation Method (Optional)

#3. Plot "Density," "Specific Heat," "Viscosity," and "Thermal Conductivity" curves from the rating calculations.

You can now plot these thermal-physical properties curves along the streams to visually assess their stream-wise variation patterns. The units of the thermal-physical properties in the plots can also be changed depending on your preference.

Si di Finita di Calendaria di Si	tart Page 🔺 📄 Plate-F	in: Rating 😠 Plat	te-Fin: Cal. Paramete	Plate-Fin: Rating Results ×
Create HEX Geometry				
• Rate HEX	Calculation Result:			Choose Plot Variable: Density
Multiple Rating	calculation Result.			Temperature
Sizing	Hot Flow Cold Flow	Overall		Pressure Drop
Optimization	Inlet Temperature:	733 16	KT	Heat Transfer Coefficient
Shell & Tubes Heat Exchanger	Outlet Temperature:	609.809232017	K T	Fin Efficiency
Create HEX Geometry	Processor Loce:	7 8395220+3		Density Specific Heat
Rate HEX	Inlet Quality:	0		Thermal Conductivity
Preliminary Design	Outlet Quality:	0	_	0.373 - Viscosity
Concentric Tubes Heat Exchanger	Mass Flow Rate:	25.4	kg/s 🔻	E 0.356 hot
Create HEX Geometry	Mass Flux:	18.324630937	ka/(s·m²) ▼	BY
Rate HEX	Flow Velocity:	56 750548746	m/s T	A: 0.34
Length Calculation	Fouling Resistance:	0.	m²K/W	<u><u><u></u></u> 0.324 cold</u>
Plate-Frame Heat Exchanger	Equivalent Diameter:	0.002775	(0.308
Create HEX Geometry	Revnolds Number:	2.053138e+3		/
Rate HEX	Heat Coefficient:	158.22892741	W/(m²·K) •	
Multiple Rating	Effective hA:	2.291704e+5	W/K •	0 0.2 0.4 0.6 0.8 1
Sizing	Colburn Factor i:	0.00405992		Dist. Along Passage / Passage Length
Optimization	Friction Factor f:	0.012983016		
Piping System	Fin Type:	rectangular		
• Design & Rate	Fin Profile:	plain		Download ALPEMA Sheet
Fin & Fin Array	Fin Efficiency %:	0.735442321		
Thermal Analysis	Fin Height:	0.0057	m 🔻	
Heat Conduction	Fin Pitch:	0.002	m 🔻	
Thermal Analysis & Design	Fin Thickness:	0.00015	m 🔻	
Tube Banks	Fin Offset Pitch:	0.	m 🔻	
Thermal & Hydraulic Analysis	Flow Length:	0.9	m 🔻	
Sample Problems	Flow Width:	1.8	m 🔻	
Custom Eluid Properties	Power:	5.520232e+5	W	
	Specific Heat:	2.032376e+3	J/(kg·K) 🔻	
Project Management	Heat Capacity:	5.162235e+4	W/K •	
INSTED Database				
Unit Conversion	•		•	
Math Calculator				
Preferences	Back to the Project			
		-		

#4. You can now save "Multiple Rating," "Sizing," and "Optimization" calculation result into a regular "Rating" project directly.

Multiple-Rating: Choose a rating point and click the "Save Selected Rating Data to a Regular Rating Project" button.

Dieto Fin Most Fyshanyer 3	Start Page 😠 📄 Plat	e-Fin: Multiple Ra	ting x Plate-Fin:	Multi-Rate Result ×
Create HEX Geometry				
• Rate HEX	Calculation Result:			Choose Plot Variable: Outlet Temperal •
Multiple Rating				
Sizing	Choose One Rating	g Data Point:		show discrete data? Set units of plotting variables
Optimization	1: Hot flow mass flo	w rate = 0.89616	i [kg/s] 🔻	
Shell & Tubes Heat Exchanger	Hot Flow Cold Fl	ow Overall		
Create HEX Geometry				
Rate HEX	Inlet Temperature:	513.16	K 🔻	476 cold
Preliminary Design	Outlet Temperature:	336.991914379	K 🔻	¥ (18)
Concentric Tubes Heat Exchanger	Pressure Loss:	413.774238139	Pa 🔻	9 ⁴⁴⁰
Create HEX Geometry	Inlet Quality:	0.		te 420 _
Rate HEX	Outlet Quality:	0.		E 392
Length Calculation	Mass Flow Rate:	0.89616	kg/s 🔻	e t
Plate-Frame Heat Exchanger	Mass Flux:	4.142904054	kg/(s·m²) ▼	9 364 - bot
Create HEX Geometry	Flow Velocity:	5.547541582	m/s 🔻	0
Rate HEX	Fouling Resistance:	0.	m²K/W	
Multiple Rating	Equivalent Diameter:	0.001898591	m 🔻	0.9 0.92 0.94 0.96 0.98
Sizing	Reynolds Number:	326.376851798		Hot flow mass flow rate [kg/s]
Optimization	Heat Coefficient:	72.929950812	W/(m²⋅K) ▼	
Piping System	Effective hA:	9.83594e+3	W/K •	
• Design & Rate	Colburn Factor i	0.013410636		Set Reynolds number as x-coordinate?
<u>Fin & Fin Array</u>	Eriction Eactor f	0.055038723		Draw Points?
Thermal Analysis	Fin Type:	W9V//		Log Scale Axis?
Heat Conduction	Ein Profilo:	nlain		
Thermal Analysis & Design	Fin Efficiency %:	0.094011224		
Tube Banks	Fin Enclency %.	0.964011224		
Thermal & Hydraulic Analysis	Fin Height.	0.00635		
Sample Problems	Fin Pitch:	0.0012776	m •	
Custom Fluid Properties	Fin Thickness.	0.000152		
Draiect Management	Fin Onset Pitch.	0.3	m •	
Project management	Flow Length.	0.0		•
INSTED Database	Flow Width.	0.0002	m •	
Unit Conversion				
Math Calculator	Save Selected Rating	Data to a Regular Ra	ting Project	
Preferences				
	Back to the Proje	ct		

Sizing: Click the "Save to a Regular Rating Project" button.

	ľ	Ĩ						
Plate-Fin Heat Exchanger 🗧	Start Page 🗶 🕞 Plate	e-Fin: Sizing 🗙 I	Plate-Fin: Sizing I	Result	×			
Create HEX Geometry								
Rate HEX	Sizing Result:				Detail Resu	lt:		
Multiple Rating					List Flow	Cold Flow	Querell	
Sizing	Plate Length:	1.007424035	m •	^	HOLFIOW	Cold Flow	Overall	
Optimization	Plate Width:	2.399739799	m 🔻		Inlet Temper	ature:	733.16	K 🔻
Shell & Tubes Heat Exchanger	Hot Flow Rate:	25.4	kg/s 🔻		Outlet Temp	erature:	614.328845512	K 🔻
Create HEX Geometry	Cold Flow Rate:	25.0	kg/s 🔻		Pressure Lo	SS:	3.609087e+3	Pa 🔻
Reliminary Design	Total No. of Plates:	288			Inlet Quality		0.	
Concentric Tubes Heat Exchanger	No. of Hot Presses	1			Outlet Quali	ty:	0.	
Create HEX Geometry	No. of Hot Passes:	1			Mass Flow F	Rate:	25.4	kg/s •
Rate HEX	No. of Cold Passes:	1			Mass Flux:		14.31/6/0199	kg/(s·m²) ▼
Length Calculation	Hot Fin Type:	rectangular			Flow Velocit	y:	26.514204073	m/s 🔻
Plate-Frame Heat Exchanger	Hot Fin Profile:	plain			Fouling Res	istance:	0.000775	m²K/W •
Create HEX Geometry	Hot Fin Efficiency %:	0.828352032			Equivalent L	Jameter.	0.002775	
Rate HEX	Hot Fin Height:	0.0057	m 🔻		Heat Cooffic	iont:	1.241010+3	(W/(m2.K)
Multiple Rating Sizing	Hot Fin Pitch:	0.002	m T		Effective hA		2 0145250+5	W/K T
Optimization	Und Fin Thisland	0.00015			Colburn Fac	tor i:	0.004565891	
Pining System	Hot Fin Thickness:	0.00015			Friction Fact	tor f:	0.012542931	
Design & Rate	Hot Fin Offset Pitch:	0.			Fin Efficienc	v %:	0.828352032	
Fin & Fin Array	Cold Fin Type:	rectangular			Flow Length	[m]:	1.007424035	m 🔻
Thermal Analysis	Cold Fin Profile:	plain			Flow Width:		2.399739799	m 🔻
Heat Conduction	Cold Fin Efficiency %:	0.689983371			Power:		1.697607e+5	
Thermal Analysis & Design	Cold Fin Height:	0.0057	m 🔻		Specific Hea	at:	1.06e+3	J/(kg·K) ▼
Tube Banks	Cold Fin Pitch:	0.002	m 🔻		Heat Capac	ity:	2.6924e+4	W/K 🔻
Thermal & Hydraulic Analysis	Cold Fig Thiskness	0.00015						
Sample Problems	Cold Fin Thickness:	0.00015			•			•
Custom Fluid Properties	Cold Fin Offset Pitch:	0.						
	Heat Transfer Rate:	3.19941e+6	w •					
	Heat Transfer Area:	696.255998601	m² 🔻					
INSTED Database	Hot Pressure Loss:	3.609087e+3	Pa 🔻					
Unit Conversion	Cold Pressure Loss:	4.301144e+3	Pa 🔻					
Math Calculator	Save to a Perm	lar Dating Proje						
Preferences	Save to a Regu	ar Rating Proje	· ·					
	Back to the Project	:t						

Optimization: Click the "Save to a Regular Rating Project" button.

Plate-Fin Heat Exchanger 목	Start Page 👷 📄 Plate-	Fin: Optimization	Plate-Fin: Opt. Re	sult \star Plate-Fin: Opt.	Realization ×	
Create HEX Geometry						
• Rate HEX	Optimization Result:			Detail Result:		
Multiple Rating					0 "	
• Sizing	Plate Length:	0.6037	m 🔻	Hot Flow Cold Flo	v Overall	<u> </u>
Optimization	Plate Width:	1.000875	m 🔻	Inlet Temperature:	733.16	K
Shell & Tubes Heat Exchanger	Hot Flow Rate:	25.4	kg/s 🔻	Outlet Temperature:	620.714745591	K
Rate HEX	Calif Flam Datas	25.0		Pressure Loss:	1.486029e+3	Pa
Preliminary Design	Cold Flow Rate:	23.0	Kg/S	Outlet Quality:	0.	
Concentric Tubes Heat Exchanger	Total No. of Plates:	1000		Mass Flow Rate:	25.4	kg/s
Create HEX Geometry	No. of Hot Passes:	1		Mass Flux:	9.886649887	kg/(s·m²)
Kate HEX Length Calculation	No. of Cold Passes:	1		Flow Velocity:	18.308610903	m/s
Plate Frame Heat Exchanger	Heat Transfer Pater	2 980151a+6		Fouling Resistance:	0.	m²K/W
Create HEX Geometry	neat nansier kate.	2.500151610		Equivalent Diameter:	0.002775	m
Rate HEX	Heat Transfer Area:	604.2282375	<u>m²</u> v	Reynolds Number:	857.357919928	
Multiple Rating	Hot Pressure Loss:	808.420300934	Pa 🔻	Heat Coefficient:	86.601593143	W/(m²-K)
Sizing Optimization	Cold Pressure Loss:	461.276121957	Pa 🔻	Effective hA:	1.693869e+5	W/K
Optimization		1011270121507		Colburn Factor J:	0.006380026	
Piping System	Save to a Regula	ar Rating Project	<u> </u>	bin Type:	0.017949045	
				Fin Profile	nlain	
• Thermal Analysis				Fin Efficiency %	0.833180432	
Heat Conduction				Fin Height:	0.0057	m
Thermal Analysis & Design				Fin Pitch:	0.002	m
Tube Banks				Fin Thickness:	0.00015	m
Thermal & Hydraulic Analysis				Fin Offset Pitch:	0.	m
Sample Problems				Flow Length:	0.6037	m
Custom Fluid Properties				Flow Width:	1.000875	m
Project Management				Power:	6.98984e+4	W
INSTED Database				Specific Heat:	1.06e+3	J/(kg·K)
Unit Conversion				Heat Capacity:	2.69240+4	W/K •
Math Calculator				•		•
Preterences	Back to the Project					

In all cases, a dialog box will be presented to you; input the names of the project and click the "Save" button.

Save to a Regular Rating Project	×
Project to Save:	
Geometry Project	
Opt Test (Geometry) 33	
Rating Project	
Opt Test (Rating) 33	
Save Cancel	

A confirmation dialog will be shown.

#5. Export an Existing Project into an XML File

Under "Projects Management," choose the task for the project.

Pla	ate-Fin Heat Exchanger 🗾 💈	Start Pa	ge _×	Project Managemen	t ×			
	Create HEX Geometry	Mana	Te Fy	isting Projects:				
	Rate HEX	wiana	Se LA	isting ridjects.				
_	Multiple Rating	Cho	ose .	Thermal System Type:	Plate	Fin HEX 🔹		
_	Sizing			, ,,			_	
	Optimization	Cho	ose	Data Type:	Geor			
<u>Sh</u>	nell & Tubes Heat Exchanger				Rating			
_	Create HEX Geometry			Rating Data Name	Multip	le Ratings	Creation Date	Last Modification Date
	Rate HEA Preliminary Design			Opt Test (Rating) 33	Optim	ization netry) 33	2016-03-03 01:05:22	2016-03-03 01:05:22
Co	oncentric Tubes Heat Exchanger			(Sample) Hewitt Rating (4)	Custo	m Fin (Sample) Hewitt HX (4)	2016-01-23 22:28:46	2016-03-03 00:30:28
	Create HEX Geometry			Ont Tort (Pating) Imported		Ont Tort (Geometry) Imported	2016-02-02 11:42:44	2016-02-02 11-42-44
	Rate HEX			(a l) al a su			2010-03-02 11.43.44	2010-03-02 11.45.44
				(Sample) Chapman Rating		(Sample) Chapman HX	2016-02-24 14:39:11	2016-02-24 14:39:11
Pla	• Create HEX Geometry			multirate test 2 (Rating) 3		multirate test 2 (Geometry) 3	2016-02-10 13:07:48	2016-02-19 12:33:35
_	Rate HEX			multirate test 2 (Rating) 2		multirate test 2 (Geometry) 2	2016-02-10 13:03:01	2016-02-10 13:03:01
_	Multiple Rating			multirate test 2 (Rating)		multirate test 2 (Geometry)	2016-02-10 13:01:44	2016-02-10 13:01:44
	• Sizing			(Sample) CHE Rating (Custor	n J/F) 2	(Sample) CHE HX (Custom J/F) 2	2016-01-16 17:11:50	2016-02-10 13:01:21
	Optimization			(Sample) CHE Rating (Custor	n J/F) (1)	(Sample) CHE HX (Custom J/F) (1) 2016-02-10 12:59:45	2016-02-10 13:00:08
<u>Pir</u>	ping System			(Samala) CHE Bating		(Samala) CHE HY	2016 02 10 12 59 26	2016 02 10 12 50.22
	Design & Rate			(Sample) CHE Kating		(Sample) CHE HX	2010-02-10 12:55:26	2016-02-10 12:55:55
<u>Fir</u>	n & Fin Array		Ro	ws 1-10 of 23				
	Thermal Analysis		~	1 2 3 4	5	»		
<u>He</u>	eat Conduction							
	Thermal Analysis & Design		_					_
Tu	be Banks		Del	ete the checked rating p	rojects	Rename Duplicate	Export Impor	<u>i</u>
	Thermal & Hydraulic Analysis							
<u>Sa</u>	ample Problems							
<u>Cu</u>	ustom Fluid Properties							
 Pr	roject Management							
<u>IN:</u>	STED Database							
Un	nit Conversion							
Ma	ath Calculator							
Pre	eferences							

Check the "checkbox" for the project (file) you want to export and click the "Export" button.

Plate-Fin Heat Exchanger Start Pa	ge × Project Management ×				
Create HEX Geometry Rate HEX	ge Existing Projects:				
Multiple Rating Cho	oose Thermal System Type: Plate F	Fin HEX 🔻			
Optimization	pose Data Type: Rating	•			
Shell & Tubes Heat Exchanger					
Create HEX Geometry					
Rate HEX	Rating Data Name	Heat Exchanger Name	Creation Date	Last Modification Date	
Preliminary Design	Opt Test (Rating) 33	Opt Test (Geometry) 33	2016-03-03 01:05:22	2016-03-03 01:05:22	
Concentric Tubes Heat Exchanger	(Sample) Hewitt Rating (4)	(Sample) Hewitt HX (4)	2016-01-23 22:28:46	2016-03-03 00:30:28	
Greate HEX Geometry Rate HEX	Opt Test (Rating) Imported	Opt Test (Geometry) Imported	2016-03-02 11:43:44	2016-03-02 11:43:44	
Length Calculation	Sample) Chapman Rating	(Sample) Chapman HX	2016-02-24 14:39:11	2016-02-24 14:39:11	
Plate-Frame Heat Exchanger	multirate test 2 (Rating) 3	multirate test 2 (Geometry) 3	2016-02-10 13:07:48	2016-02-19 12:33:35	
Create HEX Geometry Rate HEX	multirate test 2 (Rating) 2	multirate test 2 (Geometry) 2	2016-02-10 13:03:01	2016-02-10 13:03:01	
Multiple Rating	multirate test 2 (Rating)	multirate test 2 (Geometry)	2016-02-10 13:01:44	2016-02-10 13:01:44	
• Sizing	(Sample) CHE Rating (Custom J/F) 2	(Sample) CHE HX (Custom J/F) 2	2016-01-16 17:11:50	2016-02-10 13:01:21	
Optimization	(Sample) CHE Rating (Custom J/F) (1)	(Sample) CHE HX (Custom J/F) (1)	2016-02-10 12:59:45	2016-02-10 13:00:08	
Piping System	(Sample) CHE Rating	(Sample) CHE HX	2016-02-10 12:59:26	2016-02-10 12:59:33	
Thermal Analysis	Rows 1-10 of 23				
Heat Conduction	« 1 2 3 4 5 »				
Thermal Analysis & Design					
Tube Banks	Delete the checked rating projects	Rename Duplicate	Export Import		
Thermal & Hydraulic Analysis					
Sample Problems			1		
Custom Fluid Properties					
Project Management					
INSTED Database					
Unit Conversion					
Math Calculator					
Preferences					

A dialog box will be displayed to show the names of the rating project to be exported and its associated "geometry." To give the project and/or its geometry a different name, simply write over the name of the project and/or its geometry, as shown below.

Export a Plate-Fin Rating Project
Project to Export: Plate-Fin Rating: Opt Test (Rating) 33 Auxiliary Projects to Export: Plate-Fin Geometry: Opt Test (Geometry) 33 Export Cancel

Click the "Export" button and a project file will be generated and downloaded in your browser.

#6. Import (an exported XML project file) back into INSTED

Under "Projects Management," choose the type of task for which you want to import a project and click the "Import" button.

Start P	age 🗴 Project Management 🗙			
Plate-Fin Heat Exchanger				
Rate HEX Geometry Ē Man	age Existing Projects:			
Multiple Rating				
Sizing	noose Thermal System Type: Plate P	-in HEX •		
Optimization	noose Data Type: Rating	¥		
Shell & Tubes Heat Exchanger				
Create HEX Geometry				
Rate HEX	Rating Data Name	Heat Exchanger Name	Creation Date	Last Modification Date
Preliminary Design	Opt Test (Rating) 33	Opt Test (Geometry) 33	2016-03-03 01:05:22	2016-03-03 01:05:22
Concentric Tubes Heat Exchanger	(Sample) Hewitt Rating (4)	(Sample) Hewitt HX (4)	2016-01-23 22:28:46	2016-03-03 00:30:28
Create HEX Geometry Rate HEX	Opt Test (Rating) Imported	Opt Test (Geometry) Imported	2016-03-02 11:43:44	2016-03-02 11:43:44
Length Calculation	(Sample) Chapman Rating	(Sample) Chapman HX	2016-02-24 14:39:11	2016-02-24 14:39:11
Plate-Frame Heat Exchanger	multirate test 2 (Rating) 3	multirate test 2 (Geometry) 3	2016-02-10 13:07:48	2016-02-19 12:33:35
Create HEX Geometry	multirate test 2 (Rating) 2	multirate test 2 (Geometry) 2	2016-02-10 13:03:01	2016-02-10 13:03:01
Multiple Rating	multirate test 2 (Rating)	multirate test 2 (Geometry)	2016-02-10 13:01:44	2016-02-10 13:01:44
Sizing	(Sample) CHE Rating (Custom J/F) 2	(Sample) CHE HX (Custom J/F) 2	2016-01-16 17:11:50	2016-02-10 13:01:21
Optimization	(Sample) CHE Rating (Custom J/F) (1)	(Sample) CHE HX (Custom J/F) (1)	2016-02-10 12:59:45	2016-02-10 13:00:08
Piping System		(, (, -, -, -, -, -, -, -, -, -, -, -,		
• Design & Rate	(Sample) CHE Rating	(Sample) CHE HX	2016-02-10 12:59:26	2016-02-10 12:59:33
Fin & Fin Array	Rows 1-10 of 23			
Thermal Analysis				
Heat Conduction				
Thermal Analysis & Design				-
Tube Banks	Delete the checked rating projects	Rename Duplicate	Export Import	
Thermal & Hydraulic Analysis				
Sample Problems			1	
Custom Fluid Properties			-	
Project Management				
INSTED Database				
Unit Conversion				
Math Calculator				
Preferences				

A dialog box will be displayed.

Import a Plate-Fin Rating Project	×
Upload Project File to Import:	_
Plate-Fin Rating:	
Choose File 880430e8-01269cf19 (2).xml	
Opioau	
1	

Choose the file you want to upload and click the "Upload" button.

A dialog box containing the details of the imported project will be displayed. You also have the option of changing the name (descriptions) of the imported projects.

Important Information: Please note that your project files are downloaded into your browser default download folder. This is where to look when you want to export the file to other INSTED users.

Confirm to Import the Uploaded Plate-Fin Rating Project	×	
Project to Import:	Can change the name o projects	of the imported

Click the "Confirm" button to import the project.

#7. "Preliminary Design" Module is added to "Shell & Tubes HEX"

In "Preliminary Design", the geometry information of the shell & tubes heat exchanger is unknown, such as the shell geometry (shell type, inner diameter, etc.), baffle setup (spacing, clearance, etc.) and tube bundle setup (bundle arrangement, number of tubes, tube diameter, etc.). User only need to provide the "Design Target", which is the outlet temperature of the hot and cold streams, and with the additional data of the flow conditions and solid material, INSTED can try to find a geometry design for the Shell & Tube HEX to achieve the design target.

ing:
<u>k</u>
etc.) nce, etc.)
i

Note that a search scheme is used in the INSTED solver, so that user need to provide a reasonable "Design Parameters"

Plate.Fin Heat Exchanger S	Start Page 🛪 🕞 Shell-Tube: Preliminary Design 🗴 Shell-Tube: Design 🗙
Create HEX Geometry	
• Rate HEX	Decise Constraints:
Multiple Rating	Design Constraints.
- Sizing	Constraints Still Batt
Ontimization	
Shell & Tubes Heat Exchanger	Max. Tube Pressure Drop = 1.0E9 Pa •
Create HEX Geometry Bate HEX	Max. Shell Pressure Drop = 1.0E9 Pa 🔻
Preliminary Design	Max. Tube Velocity = 10.0 m/s T
Concentric Tubes Heat Exchanger	Min. Tube Velocity = 0.1 m/s
Create HEX Geometry Rate HEX	Max Shell Diameter = 1.524 m •
Length Calculation	Min Shell Diameter = 0.0 m V
<u>Plate-Frame Heat Exchanger</u> • Create HEX Geometry	Max Tube Length = 20.433 m •
Rate HEX	Min Tube Length = 0.0 m •
Multiple Rating	
Sizing	
Optimization	Default
Piping System	
Design & Rate	
Fin & Fin Array	Back to the Project
Thermal Analysis	

By clicking "Compute" button, a series of possible realizations will be listed

Plate-Fin Heat Exchanger S	Sta	rt Pag	ge :	× 🖻	Shell-1	Tube: Preliminary Design 🗴 Shell-Tub	e: Design R	esults	×		
Create HEX Geometry Rate HEX	Choose One Realization for Rating:										
Multiple Rating Sizing				N _{tube}	Tube Pass	Tube Arrangement	L _{tube} m ▼	D _{shell} m ▼	∆P _{tube} Pa ▼	∆P _{shell} Pa ▼	Q W ▼
Optimization		۲	1	239	1	3/4 in. tube with 15/16 in. triangular pitch (BWG 14)	20.210443095	0.43815	6.74185e+3	6.478153e+5	4.579878e+6
Shell & Tubes Heat Exchanger		0	2	301	1	3/4 in. tube with 15/16 in. triangular pitch (BWG 14)	19.972815068	0.48895	4.504892e+3	4.227819e+5	4.601112e+6
Create HEX Geometry Rate HEX		0	3	224	1	3/4 in. tube with 1 in. rotated square pitch (BWG 14)	21.407918334	0.48895	7.974915e+3	2.401751e+5	4.53273e+6
Preliminary Design		0	4	273	1	3/4 in. tube with 1 in. triangular pitch (BWG 14)	20.465517976	0.48895	5.446137e+3	3.134596e+5	4.589303e+6
Concentric Tubes Heat Exchanger		0	5	361	1	3/4 in. tube with 15/16 in. triangular pitch (BWG 14)	20.145662179	0.5334	3.342329e+3	2.653231e+5	4.592413e+6
Create HEX Geometry		0	6	277	1	3/4 in. tube with 1 in. rotated square pitch (BWG 14)	21.017671092	0.5334	5.456814e+3	1.554976e+5	4.534562e+6
Rate HEX		0	7	318	1	3/4 in. tube with 1 in. triangular pitch (BWG 14)	20.509825479	0.5334	4.215703e+3	1.918786e+5	4.575404e+6
		\bigcirc	8	442	1	3/4 in. tube with 15/16 in. triangular pitch (BWG 14)	20.834525407	0.59055	2.413013e+3	1.843212e+5	4.613205e+6
<u> Plate-Frame Heat Exchanger</u> • Create HEX Geometry		0	9	341	1	3/4 in. tube with 1 in. rotated square pitch (BWG 14)	20.917231946	0.59055	3.821166e+3	1.030853e+5	4.556891e+6
Rate HEX		0	10	381	1	3/4 in. tube with 1 in. triangular pitch (BWG 14)	20.703781825	0.59055	3.134515e+3	1.293726e+5	4.592569e+6
Multiple Rating		0	11	413	1	3/4 in. tube with 1 in. rotated square pitch (BWG 14)	21.130293943	0.635	2.781107e+3	8.235654e+4	4.583909e+6
Sizing											
Piping System Oesign & Rate											
Fin & Fin Array K • Thermal Analysis						Rate Selected Realization	Bac	k to the P	roject	L	

Check the radio button of one realization and click "Rate Selected Realization" button will view the details of the realization.

Diate Ein Heat Exchanger 3	Start Page 🔹 📄 Shell-Tube: P	reliminary Design	* Shell-Tub	e: Design Resul	ts × Shel	l-Tube: Design F	Realization	×
Create HEX Geometry			· · · ·					
• Rate HEX	Preliminary Design Result:			Calculation	Result:			
Multiple Rating								
Sizing	Shell Type:	generic		Shell Flow	Tube Flow	/ Overall		
Optimization	Number of Shell Passes:	1		Inlet Temper	ature:	324.8267	К	•
Shell & Tubes Heat Exchanger	Shell Diameter:	0 //3815	m T	Outlet Temp	erature:	358.985799018	K	•
Create HEX Geometry	Shell Diameter.	0.45815		Pressure Lo	SS:	5.020457e+5	Pa	•
Rate HEX Proliminant Design	Shell Partitioner Thickness:	2.0	m▼	Inlet Quality:		0.		
	Shell Orientation:	0.		Outlet Qualit	y:	0.		
Concentric Tubes Heat Exchanger	Sealing Strip Pairs:	0		Mass Flow F	Rate:	75.2215	kg/s	•
Greate HEX Geometry Bate HEX	Seaming Serie Fairs.			Power:		4.604774e+4	W	•
Length Calculation	Tube Arrange Type:	triangular		Flow Velocity	y:	1.467034997	m/s	•
Plate-Frame Heat Exchanger	Tube Pitch:	0.0238125	m 🔻	Fouling Resi	stance:	0.	m²K/W	T
Create HEX Geometry	Number of Tubes:	239		Reynolds Nu	umber:	5.631472e+3		
Rate HEX	Number of Tube Deccer	1		Heat Coeffic	ient:	1.37515e+3	W/(m²·K)	•
Multiple Rating	Number of Tube Passes.	1		Efficiency:		100.0		
Sizing	Tube Length:	20.210443095	m 🔻	Friction Coe	fficient:	0.344774754		
Optimization	Tube Bundle Diameter:	0.4064	m 🔻	Specific Hea	it:	2.13514e+3	J/(kg·K)	•
Piping System	Tube Inner Diameter:	0.0148336	m 🔻	Heat Capaci	ty:	1.606084e+5	W/K	•
Design & Rate								
Fin & Fin Array	Tube Outer Diameter:	0.01905	_m ▼					
Thermal Analysis	Number of Baffles:	50						
Heat Conduction	Baffle Spacing:	0.713463615	m 🔻					
I nermai Analysis & Design	Poffle Thiskness	0	m					
Tube Banks	Dame mickness:	0.		•				
Thermal & Hydraulic Analysis	Baffle Cut:	25.0	%					
Sample Problems	Save to a Regular Ratin	a Project						
Custom Fluid Properties	Cure to a regular ratin	<u>g </u>						
Project Management								
INSTED Database	Back to the Project							
		_						

The design results are shown and user can also save this realization result into a separate, regular, rating project.

Note that:

• Two-phase calculation is currently not supported for the preliminary design calculation in Shell & Tubes module.

#8. "Length Calculation" Module is added to "Concentric Tubes HEX"

In "Length Calculation", the length of the concentric tubes heat exchanger is unknown. User only need to provide the "Design Target", which is the outlet temperature of the hot and cold streams, INSTED can try to calculate the length of the concentric tubes to achieve the design target.

	Start Page 🗴 🛃 Concentric Tubes: Length Cal. 🗴	
Plate-Fin Heat Exchanger Openation • Create HEX Geometry • Rate HEX • Multiple Rating • Sizing • Optimization • Shell & Tubes Heat Exchanger • Create HEX Geometry • Rate HEX • Preliminary Design	I. Length Calculation Project Name: II. Flow Assignment:	Tube Flow
Concentric Tubes Heat Exchange Create HEX Geometry Rate HEX Length Calculation	III. Flow Direction: • Co-Current O Counter-Current	Annulus Flow
Plate-Frame Heat Exchanger • Create HEX Geometry • Rate HEX • Multiple Rating • Sizing	IV. Two Phase Flow? No Phase Change	VII. Heat Exchanger Geometry: Tube Inner Diameter = Tube Outer Diameter =
Optimization <u>Piping System</u> Oesign & Rate	V. Flow Conditions: Hot Cold	Annulus Inner Diameter = m •
Fin & Fin Array K • Thermal Analysis <u>Heat Conduction</u> • Thermal Analysis & Design	Inlet Flow Rate: kg/s Inlet Temperature: K Operating Pressure: Pa	VIII. Fluid Properties
Tube Banks • Thermal & Hydraulic Analysis Sample Problems Cuistom Fluid Properties	Fouling Resistance:	IX. Solid Material
Project Management INSTED Database	VI. Design Target:	Difference between length calculation and rating:
Unit Conversion <u>Math Calculator</u> <u>Preferences</u>	Hot Cold Outlet Temperature:	Inputs Tube tength Outlet Temperature - (hot, cold) Outputs Outlet Temperature - (hot, cold) Tube Length
	New Save Load C	lose Compute

By clicking "Compute" button, the calculation result will be shown. User can also save the calculation result into a separate, regular, rating project.

	Start Page 🔺 📄 Conce	ntric Tubes: Lengt	th Cal. 🗴 Conce	entric '	Tubes: Leng	jth Result	s ×						
Plate-Fin Heat Exchanger							1						
Rate HEX	Longth Colculation Re	ault.			Calculation Result:								
Multiple Rating	Length Calculation Re	isuit:			Calculation F	itton Result:							
Sizing	Tube Length:	1.805912442	m 🔻		Tube Flow	Annulus F	low Over	all					
Optimization				_	Inlet Tempera	iture:	363,706		F				
Shell & Tubes Heat Exchanger	Save to a Regula	r Rating Project			Outlet Tempe	rature:	359.835438	3414					
Create HEX Geometry			_		Pressure Los	e.	320 161637	763	P				
Rate HEX					Inlot Quality	з.	0	100	10	, · ·			
Preliminary Design					Outlet Quality.		0.						
Concentric Tubes Heat Exchange					Mass Flow Pr	te:	0.620006		kala				
Create HEX Geometry						ale.	0.023330		Kg/S				
Rate HEX					Flow velocity:		0.75744512	24		3			
Length Calculation					Fouling Resis	tance:	0.		m²K/W	_			
Plate-Frame Heat Exchanger					Reynolds Nur	mber:	5.207221e+	+4					
Create HEX Geometry					Heat Coefficie	ent:	4.62768e+3	3	W/(m ² ·K)	T			
Rate HEX					Efficiency:		100.0						
Multiple Rating					Friction Coeff	icient:	0.020587						
Sizing					Specific Heat	:	4.18404e+3	3	J/(kg·K)	T			
Optimization					Heat Capacity	y:	2.635928e+	-3	W/K	•			
Piping System													
Design & Rate													
Fin & Fin Array													
Thermal Analysis										•			
Heat Conduction													
Thermal Analysis & Design													
Tube Banks	Back to the Pr	oject											

Note that:

• Two-phase calculation is currently not supported for the length calculation in Concentric Tubes module.