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1. Introduction 
 
High order finite difference procedures have been 
shown to be more accurate and require less grid 
points than low-order methods1,2. The procedures 
have been applied to problems utilizing direct 
numerical and large eddy simulations3,4 and in 
aeroacoustics5,6 and electromagnetics7-9 
calculations. 
 
Geometric complexity has forced computational 
fluid dynamicists to use overset grids10-13 in order 
to be competitive with procedures based on 
unstructured grid topologies.  Using finite-
difference procedure with overset grids, problems 
such as complete airplanes and reentry vehicles14-16 
have been solved. However, overset procedures 
have typically used low-order interpolation to 
exchange results in the common regions.15,16 When 
used with low-order flow solvers, second-order 
interpolation procedures may be adequate for 
exchanging results across boundaries. With high-
order flow solvers, the low-order overset 
interpolation procedures will reduce solution 
accuracy, particularly in the vicinity of the overset 
boundaries. Several authors have examined the use 
of high-order interpolation procedures at 
boundaries of overset domains.17-20 In particular, 
Sherer and Scott20 compared several high-order 
interpolation methods, including explicit 
Lagrange, implicit Lagrange, and B-spline 
methods using a high-order compact difference 
solver. Their results show improved solutions with 
high-order methods. The attractive features of the 
high-order explicit Lagrange interpolation method 
when compared with the other high-order methods 
were also discussed. The former is used as the 
interpolation procedure in the current work, 
although a limited number of tests were carried out 
using high-order finite-element type shape 
functions. 
 
The interest in this paper is on flow fields with 
shock waves, or other discontinuous fields21,22. The 
discontinuity-capturing procedure used in the 
present work is based on the weighted essentially 
non-oscillatory (WENO) procedure.23,24 Without 
discontinuities, interpolation procedures typically 
select a stencil such that an overlapped node is 
centrally positioned within a set of selected 
interpolation points or stencil.20 In the presence of 
a shock wave, for example, such a procedure could 
dissipate the shock wave and/or result in Gibbs 
oscillation at the boundary. Therefore, one would 
expect problems when a shock wave extends 

across an overset domain. The main objective of 
the current work is to examine the results when 
shock waves are present and both the overset 
interpolation and base procedures are high order. 
We also wish to compare the performance of the 
basic interpolation methods to one that utilizes a 
shock-capturing procedure. We report on the 
development of a high-order overset procedure for 
a general-purpose, high-order solver. For 
discontinuous flow fields, the procedure selects 
high-order overset stencils with shock-capturing 
abilities similar to the stencils used in WENO. The 
solver allows solution with both the compact 
difference method (smooth fields) and the WENO 
procedure (discontinuous fields). 
 
A description of the overset procedure is provided 
in Section 2 of this paper. The WENO scheme is 
described in section 3. Validation of the overset 
procedure is discussed for smooth and 
discontinuous fields, in section 4. Analytical 
functions are used for this purpose. The flux 
conservation properties of the development 
procedures are also discussed – section 4. The 
application of the procedure to the flow past a 
cylinder (smooth), sphere (smooth), and bow 
shock in supersonic low are presented in section 5. 
Concluding remarks are provided in section 6. 
 
 
2. The Overset Procedure 
 
The overset procedure presented in this paper is 
discussed under three subtopics: 

• Identification of the overset nodes 
• Identification of the donors for the 

overset nodes 
• Interpolation and donation of solution 

values to the overset nodes 
Details of this tasks are provided below. 
 
2.1 Identification of overset nodes 
 
Overset nodes are the nodes that lie at the 
boundary of an overlap region. The boundary of an 
overlap region may be the edge of a grid or an 
edge exposed following a hole-cutting process. For 
a high order solver, the boundary condition at the 
edge may require a buffer of several nodes to 
maintain high-order accuracy at the edge of the 
domain. In such a case, additional buffer nodes 
may also be treated as overset nodes. For instance 
for a fourth-order solver, at least two nodes at the 
boundary will require boundary conditions, and 
thus, will be overset nodes at an overlap boundary. 
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For a sixth order solver, for instance, figure 1 
illustrates the selection of overset nodes at the 
boundary of a hole cut in a grid – labeled grid 1. 
The grid 1 overlaps a second grid, grid 2, which 

contains a solid boundary. There is a buffer of 
three overset nodes at the boundary of grid 1 since 
the solver requires a buffer of three nodes to 
maintain high order up to the boundary. 

 

 
Figure 1. Overset nodes identified at the boundary of an overlapping grid 
 
2.2 Identification of donors for overset nodes 
 
Once the overset nodes are identified, they must be 
provided solution results via interpolation from 
another grid (overlapping the overset node). The 
boundary condition in an overset node is 
Dirichlett. The process of identifying donors 
involves a search within other grids to obtain a 
donor cell. Then, the offset of the overset node 
within the donor cell is calculated. To determine 
the offset, an inverse transformation procedure is 
used, as described below: 
 
2.2.1 The Inverse Transformation Procedure 
Given an overset (recipient) node located within a 
cell of a donor grid, shown in computational space 
in Figure 2, the value of the corresponding offset 
of the overset node within the donor cell can be 
obtained via an iterative scheme. To accomplish 
this purpose, a function relating the offset in 
computational space to physical space (f1, f2, f3) is 
constructed. 
 
A Taylor expansion of the function (f1, f2, f3) 
relating (ξ, η, ζ) in computational space to (x, y, z) 
in physical space may be written as: 
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Solving for (∆ξ, ∆η, ∆ζ) via a matrix inversion , 
we obtain the following iterative procedure: 
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Figure 2. Overset node enclosed within a donor cell in computation space 
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The equations (f1, f2, f3) in (ξ, η, ζ) may be chosen 
as some interpolation function such as explicit 
Lagrange interpolants or other interpolation 
function. In the current work, the form of the 
iterative equation chosen was the 64-node finite-
element basis function, to maintain a high-order 
accuracy of the inverse transform:  
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where (x, y, z) is the physical coordinate whose 
(ξ, η, ζ) offset need to be determined within an 
enclosing donor cell. 
 
Guess values for (ξ, η, ζ) are obtained from the 
metrices of the transformed domain as follows: 
 

zyx

zyx
zyx

zyx

zyx

zyx

∆+∆+∆=

∆+∆+∆=

∆+∆+∆=

ζζζζ

ηηηη

ξξξξ  

 
Overset nodes for which a donor is not found are 
referred to as orphan nodes. 
 
 
2.2.2 Projection of Cells at Solid Boundaries 
In an overset formulation, projection of grid cells 
is sometimes necessary when two overset grids 
meet close to a curved solid boundary25. Such a 
situation is illustrated in figure 3 for a concave and 
convex solid boundary. 
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Figure 3. Illustration of the projection problem (a) concave surface, (b) convex surface 
 
 
In this figure, Grid 1, overset within the domain of 
Grid 2, requires the flow results for its overset 
nodes. In the case of the concave surface, two of 
the overset nodes of Grid 1 appear to be orphans 
and can not receive interpolation results from any 
cell in Grid 2. Note that extrapolated results from 
Grid 2 will provide wrong results along the 
boundary of Grid 1. 
 

In the case of the convex surface, the overset 
nodes of Grid 1 which are on the boundary cell 
will be receiving results from cells away from the 
boundary in Grid 2. This will produce abnormally 
high velocities close to the boundary of Grid 1. 
 
To overcome this problem, the donating cells are 
projected as shown in figure 4. 

 
Figure 4. Illustration of the projection process (a) concave surface, (b) convex surface 
 
 
Projection is done as part of the second phase of 
an overset problem (finding donors for overset 
nodes). The current procedure uses a local 
projection approach. The flow chart for this 
procedure is shown in figure 5.
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Figure 5. Flow Chart of the Projection Algorithm 
 
 
The procedure for projecting surrounding cells 
involves determining the equivalent boundary node 
(node w) in the reference grid (GRID n above). 
Then the boundary cell of the active grid (GRID m) 
is projected in the direction of its normal such that 
the node w lies on its boundary side as shown in 
Figure 4. All surrounding cells are also projected as 
a ratio of their distance from the boundary such that 
the opposite boundary cell is not projected at all but 
retains its original coordinates. This approach is 
also used in PEGASUS.25 
 
If the equation of the surface normal of the 
boundary cell is (Ax + By + Cz + D = 0), the 
projection distance, d of the boundary cell can be 
calculated as 
 

DCzByAxd www +++=  
 
where (xw, yw, zw) is the coordinate of the candidate 
boundary node.  
 
For projections along the k-axis, for instance, 
boundary cells and surrounding cells are projected 
using the equation: 
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where Ke is the limit of nodes in the k-direction and 
k is the index of the current cell in the k-direction. 
 
A new search is conducted for a donor cell, in case, 
the projection has caused the overset node to have 
shifted to a new donor cell. The offset of the 
overset node within the identified donor cell is 
calculated and returned along with the index of the 
donor cell (as illustrated in Figure 5). 
 
 
2.3 Interpolating and Donating Solution Values 
to Overset Nodes 
 
The process of identifying of the donor cell in 
section 2.2 above yields the value of the corner 
node of the donor cell as well as the value of the 
offsets. During the solution process, when 
boundary conditions are applied, interpolation is 
done using a high order stencil based on the corner 
node of the donor cell. Although, this step needs to 
be performed as part of the solver process, Steps 1 
and 2 may be completed as a pre-processing step, 
except for moving boundary problems.  
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Figure 6. Interpolating stencil for an overset node 
 
Consider a non-coincident overlap of two grids 
illustrated in Figure 6. The task is to determine the 
values of solution variables at a nodal point of a 
receptor grid using the value of known nodal points 
of a donor grid. The one-dimensional case is shown 
for simplicity in Figure 6b. For the receptor or 
overset node, k, a third-order interpolation utilizing 
a central stencil would use the nodes j-1, j, j+1, and 
j+2 of the donor grid. The equation for the 
Lagrange procedure within a unit-spaced grid26 is  
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Here, m is the pre-determined order of the 
interpolant and δ is the distance of the interpolated 
point from the left-most point of the stencil. 
 
In three-dimensions, a tensor product of piece-wise, 
high-order interpolation is done using the same 
Lagrange interpolation procedure in every 
direction. 
 
2.4 Shock-Capturing Interpolation Procedures 
 
The default choice of interpolating stencil is a 
central one as described above. For shock-capturing 
capabilities, the stencil containing m nodal points is 
adapted based on the solution variable f, according 
to the algorithm below: 

 
shift = 0 
For k = -m/2 + 1, …, m/2 
 If ((k + shift) > 0) 
  If (|f(I + k + shift - 1)| > ε|f(I + k + shift)|) 
   shift = shift - 1 
 Else 
  If  (ε|f(I + k + shift + 1)| < |f(I + k + shift)|) 
   shift = shift + 1 
 End If 
End For 

 
 
In the above algorithm, ε, is a value greater than 1, 
that is adjusted to fit the magnitude of discontinuity 
intended to be captured by the scheme. 
 
As an example, consider a third-order interpolation 
(using 4 points) containing a discontinuity at node 
j+2. The stencil-shifting algorithm will result in an 

interpolation based on nodes beginning at j-2 rather 
than j-1 as shown in the figure below. Note that, for 
piece-wise three-dimensional interpolation, the 
interpolation order may be reduced when 
interpolating in the secondary directions. 

(a) 2D Overlap

j j + 1 j + 2j - 1

k k + 1k - 1

(b)1-D Overlap

δ
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Figure 7. A 4-point stencil showing the resulting interpolation stencil adopted for the point p in the 
presence of a discontinuity at the (j+2)th nodal point. A stencil to the right of j+ may also be used, 
depending of the value of the solution variable. 
 

 
 

3. The WENO Procedure 
 
 
The WENO scheme is a special type of ENO that 
uses a weighted combination of the trial stencils in 
the ENO scheme. The latter was developed for 
solving hyperbolic systems involving 
discontinuities.23,24 It can achieve uniformly high-
order accuracy with sharp, essentially non-
oscillatory shock transitions. The procedure is 
based on the Godunov approach and the basic 
principles of upwind schemes, wherein an adaptive 
stencil (based on difference tables) is used in a 
locally smoothest region. This strategy provides a 
strong inhibition towards differencing across 
discontinuities. 
  
The WENO scheme is applied to the convective 
terms of the flow equations. For the sake of 
simplicity, consider the one-dimensional scalar 
conservation law: 
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where the numerical fluxes on the right hand side 
approximate h(xj±½) to a higher order with h(x) 
defined as 
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Note that, by Liebnitz rule, we have 
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To approximate h(xj±½) to a higher order, the 
primitive function h(x) is used:  
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The square brackets denote undivided differences. 
Hence, the (k + 1)th order undivided difference of 
H(x) can be obtained recursively from the kth order 
undivided difference of f(u). Then the numerical 
flux can be expressed by a high order interpolation 
polynomial: 
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with i being the left-most point of the stencil used 
to approximate the flux. f[i,k] is defined by 

j j + 1 j + 2j - 1

  p

(a) Centered stencil

j - 1 j j + 1j - 2

  p

(b) A stencil used for interpolating j + ½
when discontinuity exists at j + 2.
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f[i,0] = f(ui) 
f[i,1] = f[i+1,0] - f[i,0]  =  f(ui+1) - f(ui) 
…… 
f[i,k] = f[i+1,k-1] - f[i,k-1]  =  f(ui+1) - f(ui) 
 
and c(s,k) by 
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The constant array c(s,k) is computed once and 
stored. 
 
The stencil adaptation procedure is as shown in 
section 2.4, except that a weighted combination of 
the stencil points is used. 
 
 
 

4. Validation 
 
4.1.1 Smooth Fields 
The procedure for smooth fields was validated 
using two overset grids with a continuous analytic 
test function, similar to the procedure in Sherer and 
Scott:20 
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Interpolated values of the function in one grid are 
compared with the exact values of the function. The 
error was computed as the sum of all the errors at 
each node according to the formula 
 

∑
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where ĝ is the value of g obtained from a donor grid 
and the summation is over the total of all overset 
nodes. The equation for the mesh used is 
 

xi,j = xmin + i∆x 
yi,j = ymin + i∆y 
∆x = Lx/(N – 1) 
∆y = Ly/(M – 1) 
Lx = xmax - xmin 
Ly = ymax - ymin 
i ∈[1, N] 
j ∈ [1, M] 
 
Four grids were used with the following limits: 
 
Grid 1 
(xmin, ymin) = (0,0), and (Lx, Ly) = (0.85, 0.60).  
 
Grid 2 
(xmin, ymin) = (0,47), and (Lx, Ly) = (0.85, 1.0).  
 
Grid 3 
(xmin, ymin) = (0.75,0), and (Lx, Ly) = (1.51, 0.60).  
 
Grid 4 
(xmin, ymin) = (0.75,47), and (Lx, Ly) = (1.51, 1.0).  
 
The values of N and M were varied for different 
values of mesh spacing, ∆x. 
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Figure 8. Error analysis of selected interpolation 
methods for a continuous function

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 8 shows the graph of the error for selected 
interpolation methods. The calculations indicate 
superior performance of the higher order methods 

when compared to the second method. For the 
accuracy and effort required, the fifth-order 
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Lagrange interpolation scheme performed relatively 
well compared to the other methods. 
 
 
4.1.2 Discontinuous Fields 
The procedure for discontinuous fields was 
validated using two overset grids with 
discontinuous analytical test functions. The mesh 
used was similar to that for the bow shock 
problem23 but contained two overlapping domains. 
The mesh for each grid contained 121 x 47 x 3 
nodal points and was generated with the following 
equations: 
 

Grid 1 

7503
1

1
771

12
12
5

1
11

1
771

12
12
5

1
11

.,.

.
)(sin)(

.
)(cos)(

==
−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−
⎥⎦
⎤

⎢⎣
⎡

−
−

−−−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−
⎥⎦
⎤

⎢⎣
⎡

−
−

−−−=

yx

yy

xx

RR
kz

M
j

N
iRRy

M
j

N
iRRx

π

π

 
 
Grid 2 
 

0603
1

1
2

12
12
5

1
11

1
2

12
12
5

1
11

.,.

)(sin)(

)(cos)(

==
−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−
⎥⎦
⎤

⎢⎣
⎡

−
−

−−−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−
⎥⎦
⎤

⎢⎣
⎡

−
−

−−−=

yx

yy

xx

RR
kz

M
j

N
iRRy

M
j

N
iRRx

π

π

 
 
where 
 

)(),(),( LkMjNi ≤≤≤≤≤≤ 111  
 
and (N, M, L) = (121, 47, 3) for both grids. 
 
The discontinuous function is 
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Two cases were tested for each interpolation 
function. The first case uses the values of Rx and Ry 
indicated above while the second case used half the 
values of Rx and Ry for both grids. The results are 
shown in figure 9. The same formula as that used 

for smooth fields for measuring the error at each 
overset grid point was used. The high order 
methods performed better than the low order 
method. However, the shock-capturing method 
which selects interpolation stencils away from 
discontinuities performed significantly better than 
the interpolation method of the same order. 
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Figure 9. Error analysis of selected interpolation 
methods for a discontinuous function. ∆r is the 
mesh size in the radial direction. 
 
 
4.1.3 Investigation of Flux Conservation 
Properties of Smooth Fields 
The flux preservation properties of the overset 
procedure were evaluated to ensure that fluxes of 
the solution variables were preserved across an 
overlap region. The test was conducted across two 
overlapping grids in a 2D calculation. The Navier-
Stokes equations are solved in general curvilinear 
coordinates employing the compact scheme with 
compact filters. The two grids are shown in the 
figure 10. 
 
The fluxes are defined as 
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The values of the fluxes were computed to the one 
side of the overlap of a donor grid and to the other 
side of the overlap of the recipient grid using the 
second order and the fifth order Lagrange 
interpolation methods. The results are illustrated in 
figure 11 and shows that the fifth order procedure 
preserved the fluxes across the overlap. The second 
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order procedure shows visible differences across the overlap. 
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Figure 10. Grids used in the test of flux conservation properties of the overset scheme 
 
 
4.2 Demonstration of High Order 
 
The validation of the overset procedure for smooth 
and discontinuous fields discussed in 5.1 show that 
the high-order procedure conveys solution variables 
more accurately across an overlap region. This was 
also confirmed by the flux preservation 
investigation performed in 5.2. Consequently, 
overlapped domains using high-order interpolation 
procedures to transfer results will provide more 
accurate boundary conditions for a CFD 
calculation, particularly for a high-order solver. 
 
 

5. Results 
 
Three problems used to illustrate the procedure 
described in this paper: subsonic flow past a 
circular cylinder and a sphere, and supersonic flow 
over a circular cylinder. These are discussed in turn 
below. 

 
5.1 Flow Past a Circular Cylinder 
 
The flow past a circular cylinder was calculated 
using five overlapping grids at Ma = 0.1, Re = 100 
similar to the validation problem in Sherer and 
Scott.20 The problem was solved in 2D with fifth-
order compact scheme for spatial differencing and 
fourth order Runge-Kutta for time integration. The 
central grid enclosed the cylinder surface and was 
constructed such that the mesh was densely graded 
at the wake region. The grid block overlapping the 
central grid was also graded at the center. The mesh 
of the entire assembly is shown in figure 12a. There 
are 121 x 60 nodes in each block. The fifth order 
interpolation scheme was used. Each block was 
assigned to a processor of a parallel machine. The 
results were compared to those from a single grid 
containing 197 x 144 nodal points, with a radius 25 
times the diameter of the cylinder. 
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Figure 11. Flux conservation properties of the overset procedure 
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Figure 12. Mesh and results for flow over a circular. (a) Overset grid, (b) single domain grid, (c) Mach 
number contour (overset grid), (d) Mach number contour (single domain grid). 
 
The differences in the two solutions were compared 
and are shown in Figure 12 for pressure. The 
largest difference (error) occurred in the pressure 
solution, with a magnitude of approximately 7.746 
x 10-5%. Figure 13 shows the Von Karman vortex 

street at the wake of the cylinder. The maximum 
value of the coefficient of drag was calculated as 
1.311, which compares well with the value of 1.310 
reported by Visbal and Gaitonde27 using a similar 
solver as the present one. 
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Figure 13. Difference contours for pressure derived from calculations in the overlapped domain and the 
single domain 
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Figure 14. Convecting vortices from the wake of the circular cylinder flowing across overset grids 
 
5.2 3D Flow Past a Sphere 
 
The overset procedure was also validated for flow 
over a 3D sphere at Re = 100, Ma = 0.1. The 
overlapped domain consisted of 6 blocks, each 
containing a segment of the sphere surface as 
shown in Figure 15. Each block contained 25 x 25 x 
25 nodal points and was assigned to a separate 
processor in a parallel machine. Spatial and 
temporal differencing were similar to the case 
discussed in section 5.1. Since each block contains 
a segment of the sphere surface, the projection 
features available within the overset scheme was 
needed to ensure accurate solution close to the 
surface of the sphere. Fifth order interpolation 
methods were used in order to match the order of 
the spatial differencing scheme. 
 

X Y

Z

 
 
Figure 15. Six overset grids for flow over a sphere. 

 
Figure 16 shows the streamlines downstream of the 
sphere. Qualitative agreement with the results in 
Patel & Johnson28 is evident. Also, the average 
value of drag was 1.235 compared to the value of 
1.20±15% reported in the literature29. 
 

X
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Z

 
 
Figure 16. Streamlines of flow past a sphere 
 
 
4.6 Bow Shock Problem 
 
The overset procedure described in this paper was 
used to calculate the bow-shock23 problem. The 
problem involved flow over the nose of a circular 
cylinder at Ma = 2.15 and Re = 3.9 x 106. The 
problem was solved in 3D with two overlapping 
domains each 121 x 47 x 3. The WENO procedure 
was used for this calculation with the beam 
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warming procedure for time integration. Two 
meshes were used to solve the problem. The first 
contains an overlap but with all nodes coincident 
(usual multi-block problem). The second mesh 
contains two overset grids. The nodes of the 
overlapping domains are generally non-coincident. 
Other than the overlap, both domains are 
proportionally similar. The grid generation 
equations for the non-coincident overset grids were 
previously presented in section 4.1. The overlap 
mesh used for the problem is shown in Figure 17. 
 
Three interpolation methods were used for 
calculating values for the overset nodes: (a) the 
method described in this paper for selecting shock-
capturing interpolation stencils, (b) fifth-order 
central interpolation stencil, (c) second order 
central interpolation stencil. The solutions obtained 
using the coincident overset grids represents the 
fourth calculation. This is used as the reference 
calculation for the non-coincident overset 
calculations. All calculations are steady state. 
Single domain results are used to initialize the 
overset calculations. 
 

Figures 18 through 20 shows the contour plot for all 
four calculations for pressure, density and u-
velocity respectively. The figures show that all 
calculations preserve the shock profile for the 
problem. This is due to the fact that the order of the 
solver is the same for all the four calculations and 
the approximation at the boundary of the overlap 
appears to have little effect on the solution far away 
from the boundary. However, for the low-order 
calculation, some differences can be observed far 
away from the overset boundary, particularly for 
the density and velocity calculations. 
 
Figures 21 through 23 show the results along 
selected radial lines - four, seven, and fourteen 
azimuthal nodes from the overset boundary. The 
results again confirm that, except for the low-order 
procedure, all interpolation methods compared well 
with the reference and the errors become smaller as 
the distance from the overset boundary increases. A 
close up on the results in the vicinity of the shock 
shows superior performance for the shock-
capturing interpolation method presented in this 
paper (Figure 24).  
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Figure 17. Two overset grids and a close up on the vicinity of the boundary AE and EF (Block 1: ABCDA, 
Block 2: EFGHE) 
 

Y

Z

(b)

Y

Z

(a)

A

B

C

D

E

F

G

H

E



 17 OF  25 
 

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2004-0437 

0.
53

66897

0.8427

0.8427

0.8427

0.84270.8427

0.
68

97

0.8427

0.8
42

70.
53

68
0.

68
97

0.
38

38

0.8427

0.
23

09

0. 3838

0.8427

0.5368
0.23

0.8427
0.8427

X

Y

Z

(d)

0 .
5

0.8427

0.8427

0.
53

68

0.8427
0.8427

0.
84

270.
53

68
0.

6 8
97

0.
84

27

0.
23

0 9

0.53680.2309 0.3838

0.
68

97

0.8427
0.84270.8427

0.8427
0.2309

0.842
7

0.3838

X

Y

Z

(b)

0.
53

6 8

0.6897

0.6897

0.6897

0.8427

0.
23

0

0.8427

0.
84

27

0.
84

27

0.
68

97

0.5 36 8

0.8427
0.8427

0.
84

27
0.

8 4
27

0.5368
0.2309

0.8427

0.3838

0.8427

0.
68

97

0.
68

97

0.
68

97

0.5368

X

Y

Z

(a)

0.
38

38

0.
5

0.
53

68

0.6897
0.6897

0.6897
0.8427

0.8427
0.84270.84270.8427

0.8427

0.8427

0.
23

09
0.

23
09

0.
68

97
0.

53
68

0.6897
0.5368

0.8427
0.8427

0.
84

27

0.8427
0.8427

0.8427
0.8427

0.6897

0.8427

0.53680.536

0.38

X

Y

Z

(c)

 
 
Figure 18. Pressure contour (a) Overlap, with coincident nodes, (b) Non-coincident overlap, 5th order, 
shock-capturing interpolation, (c) Non-coincident overlap, 5th order central interpolation stencil, (d) Non-
coincident overlap, 2nd order central interpolation stencil 
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Figure 19. Density contour (a) Overlap, with coincident nodes, (b) Non-coincident overlap, 5th order, 
shock-capturing interpolation, (c) Non-coincident overlap, 5th order central interpolation stencil, (d) Non-
coincident overlap, 2nd order central interpolation stencil 
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Figure 20. u-velocity contour (a) Overlap, with coincident nodes, (b) Non-coincident overlap, 5th order, 
shock-capturing interpolation, (c) Non-coincident overlap, 5th order central interpolation stencil, (d) Non-
coincident overlap, 2nd order central interpolation stencil 
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Figure 21. Results extracted along a line that is four nodes removed from the overlap (a) Pressure, (b) 
Density, (c) u-velocity, (d) v-velocity. r is the distance from the surface of the cylinder. 
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Figure 22. Results extracted along a line that is seven nodes removed from the overlap (a) Pressure, (b) 
Density, (c) u-velocity, (d) v-velocity. r is the distance from the surface of the cylinder. 
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Figure 23. Results extracted along a line that is fourteen nodes removed from the overlap (a) Pressure, (b) 
Density, (c) u-velocity, (d) v-velocity. r is the distance from the surface of the cylinder. 
 
 



 23 OF  25 
 

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2004-0437 

 

1.05 1.1 1.15
r

0.78

0.79

0.8

0.81

0.82

0.83

0.84

P

No Offset
Offset (New Method)
Offset (Central 5th Order)
Offset (Central 2nd Order)

(a)
1.05 1.1 1.15

r

2.8

2.85

2.9

2.95

ρ

No Offset
Offset (New Method)
Offset (Central 5th Order)
Offset (Central 2nd Order)

(b)

0.7 0.8 0.9 1 1.1 1.2
r

-0.034

-0.033

-0.032

-0.031

-0.03

-0.029

-0.028

v

No Offset
Offset (New Method)
Offset (Central 5th Order)
Offset (Central 2nd Order)

(d)
1.1 1.15

r

0.31

0.32

0.33

0.34

0.35

0.36

u

No Offset
Offset (New Method)
Offset (Central 5th Order)
Offset (Central 2nd Order)

(c)
 

 
Figure 24. Results near the shock along a line that is four nodes removed from the overlap (a) Pressure, (b) 
Density, (c) u-velocity, (d) v-velocity. r is the distance from the surface of the cylinder. 
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5. Concluding Remarks 
 
In this paper, we report on a high-order overset 
procedure for smooth flow fields and flow fields 
with discontinuities. Validation of the procedure is 
discussed, as is its flux conservation. The procedure 
is illustrated with the calculation of flow over a 
cylinder and sphere. Calculations of the bow shock 
over a circular cylinder were also carried out. 
Results show the high order interpolation procedure 
to be the most accurate in providing interpolated 
data at the overlap region. For discontinuous fields, 
the newly introduced shock-capturing interpolation 
procedure shows significant improvement in the 
vicinity of the discontinuities.  
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