
Parallel Implementation of Curvilinear High-order Formulas

F. LADEINDEa,*, X. CAIb, M.R. VISBALc and D. GAITONDEc

aMechanical Engineering Department, State University of New York, Stony Brook, NY 11794-2300, USA; bAerospace Research Corporation,
Stony Brook, L.I., NY 11790, USA; cAir Vehicles Directorate, Wright-Patterson AFB, OH 45433, USA

High-order formulas are required for differencing and filtering the Navier–Stokes equations in order to
obtain the needed accuracy for a variety of CFD applications. The parallel performance issue relevant to
one of these methods, the compact scheme, is studied in this paper with emphasis on the associated
implicit operators. Three procedures were selected: the one-sided method, the parallel diagonal
dominant (PDD) method, and the parallel Thomas algorithm (PTA) method. These parallel procedures
were implemented in the AFRL code, FDL3DI. Kernel codes were also developed to extract some
inherent performance features of these methods. Some of the calculations combine the methods for
compact differencing and filtering. In general, the procedures based on the one-sided schemes produced
accurate results and good parallel performance (efficiency, speedup, and scalability). The procedures
that combine the one-sided schemes and PDD also performed well. However, parallel calculations that
use the PDD method for both compact differencing and filtering produced the wrong results for low-
order filters. On the other hand, high-order filters cause PDD to be very expensive. The one-sided
method leads to super-scalable calculations when the number of processors is low. For PDD, increasing
the number of grid points in the derivative-difference direction leads to better speedup, as does an
increase in the number of right-hand side (RHS) columns. In standard implementation (i.e. without
engaging the processors during the idle time), the PTA procedure has a very poor parallel performance
in comparison to PDD and the one-sided formulations. However, the procedure tends to be more
accurate.

Keywords: Parallel Thomas algorithm; High-order formulas; Compact schemes; Parallel diagonal
dominant; Computational fluid dynamics; Implicit formulas; Parallel computation

INTRODUCTION

High-order formulas are required for differencing and

filtering the Navier–Stokes equations in order to obtain

the needed accuracy for direct numerical simulation

(DNS), large-eddy simulation (LES) of turbulence and a

variety of CFD applications. In this regard, the essentially

non-oscillatory (ENO) scheme has received attention

(Cai et al. 1996; 1997a,b; 1999), as have the compact

finite difference schemes for Cartesian (Lele, 1992) and

generalized curvilinear formulations (Visbal and

Gaitonde, 1998; Gaitonde and Visbal, 1998). Recently,

a comparison of the ENO and compact schemes was

presented (Ladeinde et al., 2001) in which the focus was

placed on the ability of the two procedures to resolve the

high wave number end of the turbulence energy spectrum.

The present paper deals with the compact schemes.

The computational load associated with the solution of

realistic fluid dynamic systems mandates code execution

on supercomputers, to take advantage of massive

parallelization in such systems. The development of

the compact schemes along this line has been initiated

(Gaitonde and Visbal, 1999), wherein the performance of

2D, overlapped, multiblock formulations was investi-

gated, leading to the derivation of appropriate high-order

one-sided filter formulas with stable and accurate

interblock treatments.

Unlike the ENO schemes which are explicit and

parallelize relatively easily (Ladeinde, 1992; Ladeinde

et al., 1996; Cai et al., 1997), certain numerical issues

undermine the parallel performance of the compact

differencing schemes. The first and perhaps most obvious

is the implicit nature of the spatial differencing operators

in the form of tridiagonal or pentadiagonal matrix

systems, which are inherently difficult to parallelize

efficiently. The parallel diagonal dominant (PDD)

algorithm (Sun and Moitra, 1996) and the parallel Thomas

algorithm (PTA) (Povitsky, 1998; Povitsky and Morris,

1999) have been proposed for compact tridiagonal

operators. However, algorithmic performance, in terms

of efficiency, for the Navier–Stokes equations in

generalized curvilinear coordinate systems has not

ISSN 1061-8562 print/ISSN 1029-0257 online q 2003 Taylor & Francis Ltd

DOI: 10.1080/10618560310001615060

*Corresponding author. Tel.: þ1-631-632-9293. E-mail: foluso.ladeinde@sunysb.edu

International Journal of Computational Fluid Dynamics, December 2003 Vol. 17 (6), pp. 467–485

received enough attention. The one-sided multidomain

approach (Gaitonde and Visbal, 1999) is also an option for

parallel implementation of tridiagonal matrix operators.

The performance of the one-sided method has also not

been reported for 3D or parallel processing.

The second difficulty with the parallelization of the

compact schemes pertains to the discretization of the

viscous and heat conduction terms in the flow equations.

Compact formulas that directly discretize these second

derivative terms have been proposed (Lele, 1992).

However, their applicability to general curvilinear

formulations involves a significant computational penalty.

The successive applications of the compact formula, as

in Gaitonde and Visbal (1999), is computationally more

efficient and, although the procedure may be more prone to

numerical instability, this instability has not been observed

in several applications of the method. However, message-

passing difficulties are possible in parallel implementation

because of the difficulty of bundling small messages in the

two-pass procedure.

The third difficulty with the parallelization of the high-

order compact schemes pertains to the filter, which is often

needed for numerical stability. As shown later in this

paper, low-order filters may not work well with some of

the algorithms, such as the one-sided and PDD algorithms.

On the other hand, the use of high-order filters could lead

to unacceptably low parallel efficiency because of the

relatively large stencil size.

It is the objective of the present paper to investigate the

foregoing issues, with a view toward determining the

relative parallel performance (efficiency, speedup and

scalability) of various algorithms for differencing and

filtering. Due to our interest in realistic aerodynamic

systems, we particularly focus on procedures that are

relatively easy to implement and therefore are applicable

to the simulation of practical configurations. The three

methods selected for further study are the one-sided,

the PDD and the PTA methods. To our knowledge, the

present work represents the first application of the PDD

procedure to the parallel calculation of the complete

Navier–Stokes equations. We are also not aware of any

previous application of the PTA procedure in a generalized

curvilinear coordinate framework, with or without the use

of high-order filters.

This paper is organized as follows. The basic numerical

procedures in the AFRL code, FDL3DI, are summarized

in the second section, followed by a description of the

parallel strategies in the third section. The third section is

divided into two subsections, for the one-sided procedure

and the parallel diagonal solvers, respectively. The

descriptions of the PTA and PDD methods are presented

in the latter. Results are given in the fourth section, first for

the theoretical performance of the three parallel strategies

and then for the kernel procedures developed for

investigating the inherent performance of the methods.

The last subsection in the fourth section pertains to the

parallel results using FDL3DI. Conclusions are presented

in the fifth section.

THE NUMERICAL MODEL

The compressible Navier–Stokes equations expressed in

the strong conservation form for generalized curvilinear

coordinates ðj;h; zÞ are as follows:

›

›t

U

J

� �
þ

›F

›j
þ

›G

›h
þ

›H

›z

¼
1

Re

›Fv

›j
þ

›Gv

›h
þ

›Hv

›z

� �
; ð1Þ

where U ¼ {r; ru; rv; rw; rEt} is the solution vector, J is

the Jacobian of the transformation, F, G, H are the inviscid

fluxes and Fv, Gv, Hv are the viscous fluxes. The equations

are closed with the perfect gas law and Sutherland’s

viscosity law.

In the framework of compact differencing, the

derivative u0 for any generic variable u in the transformed

coordinate frame is represented as

aui21
0 þ ui

0 þ auiþ1
0 ¼ b

uiþ2 2 ui22

4Dj

þ a
uiþ1 2 ui21

2Dj
; ð2Þ

where a, a, and b are constants which determine the

spatial properties of the algorithm. The base compact

differencing schemes used in this paper are the three-

point, fourth-order scheme, C4, with ða; a; bÞ ¼

ð1=4; 3=2; 0Þ; the five-point, sixth-order scheme,

C6, with ða; a; bÞ ¼ ð1=3; 14=9; 1=9Þ and the five-

point, fourth-order scheme, O5, with ða; a; bÞ ¼

ð0:430816; 1:6205440; 0:2410880Þ: The latter scheme

minimizes the dispersion error over the entire range of

wave numbers up to two points per wave. Note that the

symbol u above also represents components of vector

quantities such as the F or G vector defined in Eq. (1).

Equation (2) is used to calculate the various

derivatives in the ðj;h; zÞ plane, as well as the metrics

of the coordinate transformation. The inviscid fluxes in

the Navier – Stokes equations are formed in the

transformed coordinates at each nodal point and the

components are differentiated using Eq. (2). The same

coefficients ða; a; bÞ are used for both the metrics and

the fluxes; this procedure reduces error on stretched and

curvilinear meshes. To calculate the double derivative

(e.g. the viscous and heat conduction) terms, the

appropriate components of the primitive variable vector

W ¼ {r; u; v;w; T} are first compact differentiated to

form the stress tensor and heat flux vector. The viscous

and heat conduction terms of the flow equations are then

computed by another application of Eq. (2). The use of

second derivative compact formulations, as given by

Lele (1992), has some advantages but could lead to

an excessive computational penalty in curvilinear

coordinates.

F. LADEINDE et al.468

The compact formulas for the physical boundary points

are well known. The present work is based on the

boundary formulas as given by Visbal and Gaitonde

(1998) and Gaitonde and Visbal (1998). Time integration

of the ODE that results from the spatial integration is

based on the classical fourth-order Runge-Kutta (RK4)

scheme.

Filters are employed to numerically stabilize the

compact differencing calculations. In the formulation,

the filtered values ũ for any quantity u in the transformed

space are represented as (Gaitonde and Visbal, 1998;

1999):

af ~ui21 þ ~ui þ af ~uiþ1 ¼
XN

n¼0

an

2
ðuiþn þ ui2nÞ: ð3Þ

This representation provides a non-dispersive, 2Nth-order

filter with a 2N þ 1 point stencil. The eighth- and tenth-

order filters are mostly used in the present work, for which

the coefficients are tabulated by Gaitonde and Visbal

(1998). Simulations with lower-order filters are also

reported for the purpose of investigating the effect on

accuracy and numerical stability in a multiblock and/or

parallel environment.

PARALLELIZATION STRATEGIES

The One-sided Formulations

The basic algorithm for the one-sided approach was

presented by Gaitonde and Visbal (1999). It involves the

advancement of the solution independently in each

subdomain with individual interior and boundary formulas

in the same manner as in single-domain computations.

Data is exchanged between adjacent subdomains at the

end of each sub-iteration of the implicit scheme (or each

stage of RK4), as well as after each application of the

filter. Gaitonde and Visbal (1999) applied the interface

algorithm to some 2D inviscid and viscous flow

calculations using the compact scheme. It was found

that the lower-order one-sided boundary scheme could

cause a serious distortion of the flow structure and that this

distortion could be reduced by superior higher-order one-

sided filter formulas and a deeper overlap size.

Parallel Tridiagonal Solvers

Parallel tridiagonal solvers are an alternative to the one-

sided multidomain formulations discussed in the last

subsection. They are expected to recover the single-

domain results if a conforming mesh system is used. With

this requirement, there exist three candidate algorithms,

i.e. the transposed (Cai et al., 1997), the pipelined

(Povitsky, 1998) or PTA and Sun’s distributed PDD

methods. The transposed approach (Povitsky, 1998) will

not be discussed in this paper.

The Reduced PDD Algorithm

The reduced PDD algorithm was developed by Sun and

Moitra, 1996 for the tridiagonal system

Ax ¼ d; ð4Þ

where x ¼ ðx1; . . .; xnÞ
T and d ¼ ðd1; . . .; dnÞ

T are n-dimen-

sional vectors and A is a diagonally dominant tridiagonal

matrix with order n:

A ¼

b0 c0

a1 b1 c1

� � �

� � �

an22 bn22 cn22

an21 bn21

2
66666666664

3
77777777775
:

The reduced PDD algorithm partitions A into

tridiagonal submatrices Ai and solves

ð ~A þ DAÞx ¼ Ax ¼ d ð5Þ

based on algebraic matrix manipulation with ~A ; <Ai

being a block tridiagonal matrix with diagonal sub-

matrices Aiði ¼ 0; . . .; p 2 1Þ: To illustrate this matrix

transformation, we assume n ¼ pm without loss of

generality. The sub-matrices Aiði ¼ 0; . . .; p 2 1Þ are

then m £ m tridiagonal matrices. Note that DA denotes

the matrix containing the extra entries in A that are not

contained in < Ai. By some manipulations, we can

express this matrix as follows:

DA ¼ ½amem; cm21em21; . . .; að p21Þmeð p21Þm;

cð p21Þm21eð p21Þm21�

eT
m21

eT
m

..

.

eT
ð p21Þm

eT
ð p21Þm21

2
666666666666664

3
777777777777775

¼ VE T;

where both V and E are n £ 2ð p 2 1Þ matrices and ei

denotes a column vector with its ith element being one and

all the other entries being zero. Therefore, the matrix

transformations can be written as

x ¼ ðA þ VE TÞ21d

¼ ~A21d 2 ~A21VðI þ E T ~A21VÞ21E T ~A21d: ð6Þ

PARALLEL HIGH-ORDER FORMULAS 469

Let

~A~x ¼ d; ð7Þ

~AY ¼ V ; ð8Þ

Z ¼ I þ E TY ; ð9Þ

h ¼ E T ~x; ð10Þ

Zy ¼ h; ð11Þ

D x ¼ Yy; ð12Þ

the solution is thus

x ¼ ~x 2 D x:

Note that each step in Eqs. (7)–(12) can be solved

independently, block-by-block.

The implementation of the above algorithm can be

described by the following steps:

1. Allocate Ai, d (i) and elements aim, c(iþ1)m 2 1 to the ith

block, where 0 # i # p 2 1:
2. Solve Ai½~x

ðiÞ; v ðiÞ;w ðiÞ� ¼ ½d ðiÞ; aime0; cðiþ1Þm21em21�;
where 0 # i # p 2 1 [For Eqs. (7) and (8)].

3. Send ~x
ðiÞ
0 ; vðiÞ

0 from the ith block to the (i 2 1)th block,

where 1 # i # p 2 1:
4. Solve

1 wðiÞ
m21

vðiþ1Þ
0 1

2
4

3
5 y2i

y2iþ1

 !
¼

~x
ðiÞ
m21

~x
ðiþ1Þ
0

0
@

1
A;

where 0 # i # p 2 2: [For Eq. (11)], since Z has the

form with order of 2ð p 2 1Þ £ ð2p 2 1Þ;

Z ¼

1 wð0Þ
m21

vð1Þ
0 1 0 wð1Þ

0

vð1Þ
m21 0 1 wð1Þ

m21 0

� � � � �

� � � � �

� � 1 0 w
ð p22Þ
0

v
ð p22Þ
m21 0 1 w

ð p22Þ
m21

0 v
ð p21Þ
0 1

2
66666666666666666666666664

3
77777777777777777777777775

and vðiÞ
m21; wðiÞ

0 are negligible for a diagonally dominant

tridiagonal system when m @ 1 (not more than 10 for

Compact scheme).

5. Send y2i from the ith block to the ði þ 1Þth block,

where 0 # i # p 2 2:
6. Solve

D x ðiÞ ¼ v ðiÞ;w ðiÞ
� � y2ði21Þ

y2iþ1

 !
;

where 0 # i # p 2 1:

The PTA Procedure

To understand the PTA procedure (Povitsky, 1998), we

first give the basic Thomas algorithm for the linear-

algebra system:

ak; lxk21; l þ bk21; lxk; l þ ck; lxkþ1; l ¼ f k; l; ð13Þ

where k ¼ 1; . . .;Nx; l ¼ 1; . . .;Ny £ Nz; ak, l, bk, l, ck, l are

the coefficients from the compact scheme or the implicit

filter scheme, xk, l are the unknown variables, and Nx, Ny

and Nz are, respectively, the number of grid nodes in the

x, y, and z directions.

The first step of the Thomas algorithm is LU

factorization:

d1; l ¼ b1; l; dk; l ¼ bk; l 2 ak; l

ck21; l

dk21; l

;

k ¼ 2; . . .;Nx; ð14Þ

and forward substitution (FS):

g1; l ¼
f 1; l

d1; l

; gk; l ¼
2ak; lgk21; l þ f k; l

dk; l

;

k ¼ 2; . . .;Nx: ð15Þ

The second step of the Thomas algorithm is backward

substitution (BS):

xNx; l ¼ gðNx; lÞ; xk; l ¼ gk; l 2 xkþ1; l

ck; l

dk; l

;

k ¼ 1; . . .;Nx 2 1: ð16Þ

In the first step, the constants ak, bk, ck are from compact

schemes or implicit filters and the LU factorization is

performed only once so that the FS dominates the

computations. However, to proceed with the FS, the

ði 2 1Þth data is needed for the evaluation of the ith data.

This is an unfavorable situation in parallel computations.

For example, suppose a line l in the x-direction is split

among the P processors and each processor holds

N ¼ Nx=P data. Computing its part of the lth line, the

pth processor: receives coefficient gððp21ÞN; lÞ from the

ðp 2 1Þth processor; computes the forward step coeffi-

cients gk, l, where k ¼ ðp 2 1ÞN þ 1; . . .; pN; sends coeffi-

cients gðpN; lÞ to the pth processor. Before the arrival of the

data gðpN; lÞ; the pth processor is idle. A similar situation

F. LADEINDE et al.470

occurs during BS. It is obvious that to obtain the least idle

time, the pth processor should communicate with its

neighbors only after the calculation of every line. The

penalty for not doing this is that too many small messages

are generated which introduces a significant amount of

communication latency. A trade-off between the cost of

idle time and the communication latencies can be

achieved by finding the optimized number of lines in

each message to be solved, which is represented in Eq. (4).

A few comments on the communication modes are in

order before the results are presented. Two types of data

are communicated: (1) data needed to evaluate the right-

hand side of the global matrix system and (2) the data

required in order to invert the tridiagonal matrix from

compact differencing or filtering. All the procedures

(PTA, PDD and one-sided) require communication to

calculate the RHS vector. The stencil for the RHS vector

could be quite large. Stencil size is determined by the RHS

of compact differencing formula [Eq. (2)] and the RHS of

the filtering operation in Eq. (3). Clearly, high-order filters

will involve a large stencil. Not all the methods need to

communicate any data in order to invert the tridiagonal

matrix associated with the left-hand side (LHS) of Eqs. (2)

and (3). Specifically, a subdomain in the one-sided method

is self-contained with respect to the tridiagonal matrix,

even if this matrix is approximate. Also, the coefficients of

the matrix are constant. Therefore, the one-sided method

does not communicate any data in order to invert A. For

PDD and PTA, A is exact and global (not subdomain-

based); a subdomain contains only a part of A and needs to

communicate with neighboring subdomains during

the matrix inversion process. For example, for PTA, the

coefficients of A as well as the forward results ðgi; jÞ and

the backward results ðxi; jÞ need to be communicated.

For PDD, the data ~x
ðiÞ
0 ; vðiÞ

0 ; and y2i need to be com-

municated. Note that the depth of communication is one

grid point for the purpose of inverting the tridiagonal

matrix. It is clear from the foregoing comments that

the communication times stated for the one-sided

procedure in Tables I and II are actually not used in the

present implementation, but it is there in case the

coefficients of A are nevertheless communicated.

RESULTS

Theoretical Performance of the Parallelization

Strategies

The theoretical performance of the three algorithms

investigated in this paper is summarized in Table I. Table II

contains the numerical values for the IBM SP2 system at

Cornell, where the present calculations were done. While

the data in Table I are CPU times, those in Table II are the

CPU times normalized by those for the Thomas algorithm

(i.e. the sequential computation). Thus, the data in Table II

are actually those of speedup. They were generated for

a kernel problem with N ¼ 400 (i.e. total number of

nodal points in the x- or derivative-direction), N1 ¼ 400

(i.e. number of nodal points in the vertical or vector

direction). N2 in the table is the overlap depth in terms of

grid points. The numbers in parentheses in Table II are

the values actually observed (measured) in our numerical

experiments. Note that the domain is decomposed only in

the x-direction.

The system data for the IBM SP2 are: start-up latency,

a ¼ 55ms; point-to-point communication, 1=b ¼

17:5 MWords=s; and time to perform one floating point

operation, g ¼ 1=65ms: Note that b ¼ 1=17:5ms; is the

time required to send a double precision data. Thus,

a=b < 966; which is a large number (compared to unity),

indicating that it is costly to initiate the process of sending

a message (big or small) in this system and that messages

should be bundled. The system is rated at 266 Mflops/s at

peak performance, although the measured values are

65 Mflops/s (block tridiagonal matrix calculation) and

TABLE I Theoretical CPU times required by various schemes to invert a tridiagonal system of matrix equations

Algorithm Computation Communication Idle

TDMA (Cai, 1999) N1ð5N 2 3Þg 0 0
One-sided (Gaitonde and Visbal, 1999) N1½5ðN=P þ N2Þ2 3�g ð2aþ N1N2bÞ 0
PTA (Povitsky, 1998) T1 ¼ N1ð5 N=P 2 3Þg T2 ¼ 2kaþ 2N1b ðP 2 1Þ ðT1=kÞ
PDD (Sun and Moitra, 1996) N1ð5 N=P þ 3j þ 1Þg 2a þ 2N1b 0

“j ” Is the reduced number in Sun’s PDD algorithm and “k” is the number of groups of lines (packets) in the PTA procedure.

TABLE II Theoretical versus observed CPU times on IBM SP2 taken by various schemes to invert a tridiagonal system of matrix equations

Algorithm P ¼ 2 P ¼ 4 P ¼ 8 P ¼ 16

TDMA 1 1 1 1
One-sided 1.954 (1.957) 3.826 (3.802) 7.342 (7.30) 13.585 (13.41)
PTA 1.53 (1.445) 2.29 (1.927) 3.07 (2.179) 3.69 (2.169)
PDD 1.89 (1.762) 3.59 (3.025) 6.52 (5.098) 11.01 (6.78)

Only the computation task is included in this table (i.e. no communication or idle time) and the numbers have been normalized by the CPU time for the Thomas algorithm. The
numbers in parentheses are the observed (measured) values.

PARALLEL HIGH-ORDER FORMULAS 471

85 Mflops/s (multi-grid calculation). In Tables I and II,

P denotes the number of processors, k is the number of

groups of lines solved per packet in the pipelined algorithm

and j is the reduced number in the Sun’s algorithm, usually

no larger than 10 for the compact difference scheme.

Note that the optimal parameter k can be expressed as

k ¼
N1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N1·P=N·n
r ðP21Þ

q
2
6666

3
7777; ð17Þ

where n ¼ a=g2; r ¼ g1=g2; and g1 and g2 are the forward

and backward calculation times for the TDMA per grid

point. To produce Tables I and II, we choose Sun’s

reduced PDD approach to represent the distributed

algorithms, which appears to be the most efficient parallel

solver for diagonal dominant tridiagonal systems in this

category (Table I), and the unoptimized Povitsky method

to represent the pipelined algorithms. The transposed

algorithm (not shown) was originally developed by Cai

et al. (1997) for FFT but has also been applied to the

tridiagonal system at hand. The “Thomas” algorithm in

FIGURE 1 Speedup and scalability of parallel computations with a kernal code for PDD: (a) Speedup of the multiple-RHS reduced PDD algorithm.
Includes the time for the preparation of TDMA; (b) Speedup of the multiple-RHS reduced PDD algorithm. Excludes the time for the preparation of
TDMA; (c) Speedup of the single-RHS reduced PDD algorithm. Includes the time for the preparation of TDMA; (d) Scalability of the multiple-RHS and
the single-RHS reduced PDD algorithm without the time for the preparation of TDMA (Problem size in each processor: 60 £ 120); (e) Scalability of the
multiple-RHS reduced PDD algorithm for different problem sizes.

F. LADEINDE et al.472

the table is the standard (sequential) tridiagonal Thomas

algorithm (TDMA) for solving the tridiagonal system of

matrix equations. From Table I, it can be seen that Sun’s

algorithm incurs a smaller communication cost compared

to PTA, and therefore should be preferred on machines

capable of handling computations much faster than they

do communication.

Parallel Performance Studies with Kernel Codes

The ultimate goal of the present project is to produce an

efficient and scalable parallel version of the AFRL code,

FDL3DI. In order to choose among the three parallel

strategies, it became necessary to carry out some basic

investigations of each of the strategies. These procedures,

which we refer to as kernel procedures, focus on the

parallelization of the basic tridiagonal system of

equations, without the details of the Navier–Stokes

equations or the manner in which the tridiagonal system

was generated. In the next two subsections, we report on

the performance of PDD and compare the parallel

performance of PTA to those of PDD and the one-sided

approach.

Performance of PDD

The PDD algorithm involves a large amount of

communication relative to the one-sided algorithm and

FIGURE 1 Continued.

PARALLEL HIGH-ORDER FORMULAS 473

hence, as shown later in this paper (Table V), shows up

very poorly. It therefore became necessary to examine this

procedure in more detail, for some insight into the factors

that determine its performance. For this purpose, a kernel

code suffices, and was developed as a stand-alone code

with C4 compact differencing. No filters were used for the

kernel codes reported in this paper. To analyze the

x-difference, ›/›x, the domain is split in the x-direction,

and the y-direction is treated as the “vectorization”

(vertical) direction. That is, the difference along various

lines in y are computed via the multiple right-hand side

(RHS) procedure in which the number of RHS columns is

equal to the number of lines (nodal points) in y. The

x-difference for all x–y planes is obtained by looping over

the z-direction and repeating the above procedure. The

y- and z-differences, ›/›y, ›/›z, are analyzed similarly.

The results in Fig. 1 pertain only to the x-difference and

one x–y plane. Hence, the two dimensions shown for the

grid in the figure legend (for example, 240 £ 960). The

first index is the x-direction, the second is the “vectori-

zation” (vertical) direction. The results for all z lines can

be obtained by a simple scaling of the reported results

which, incidentally, is a procedure that is quite consistent

with the setup of the FDL3DI code.

Figures 1(a–c) and (d, e) show the speedup and

scalability results, respectively. With the number of x grid

points fixed, increasing the number of processors reduces

the speedup [Fig. 1(a–c)], as would be expected based on

the increased amount of communication relative to the

time for useful calculations. However, of interest is the

fact that increasing the number of RHS columns leads to

better performance, both in terms of speedup and

scalability. Scalability is calculated as speedup with

the number of grid points fixed for each processor, and

the number of processors (and hence the problem size) is

varied. A highly scalable process will show a straight line

with near-unity slope.

Performance of PTA

The performance of PTA relative to that of PDD and the

one-sided scheme is tested on a kernel problem which is a

tridiagonal system with Nx ¼ 60; Ny ¼ 120 in each

processor. Three identical equations were solved instead

of one, to mimic the Navier–Stokes equations. The

effective Ny [or NV in Eq. (20) below] is, therefore, equal

to 3 £ 120: Some system parameters are required to

analyze the performance of PTA. The communication

time for a single message between two processors in the

network can be approximated by the following linear

expression:

f ðLÞ ¼ aþ Lb; ð18Þ

where L is the number of bytes (words) per message. The

computation times at a single point for the FS and BS are

g1 and g2, respectively. Therefore, the additional (i.e.

communication plus idle) CPU time required for PTA can

be written as

F ¼ dNV=k1e ðaþ k1bÞ þ dNV=k2e ðaþ k2bÞ

þ ðP 2 1ÞNV ðk1g1 þ k2g2Þ; ð19Þ

where NV ¼ Ny £ Nz; and k1 and k2 are the number of

lines solved per packet for the forward and backward step

computations. (Note that in Table I, it has been assumed

FIGURE 1 Continued.

F. LADEINDE et al.474

that k1 ¼ k2 ¼ k). From Eq. (19), the optimal k1 and k2 are

thus obtained:

k1 ¼

ffi
NV=N·s1

s2ðP 2 1Þ

s
; k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NV=N·s1

ðP 2 1Þ

s
; ð20Þ

where s1 ¼ a=g2 and s2 ¼ g1=g2; both of which are

machine-dependent parameters. Numerical experiments

on the IBM SP2 at the Cornell Theory Center have found

that

s1 . 487; s2 . 1:35: ð21Þ

Figure 2 shows a schedule for the communication and

computations within a pipeline, using four processes for

the illustration. Lines are gathered in four packets in the

forward direction and also in four packets (by chance) for

the backward direction. Zeros denote the idle time. Note

that the k1 and k2 values in this figure, i.e. 27 and 31,

respectively, are not necessarily those of Povitsky because

they depend on the number of grid points, as per their

definitions in Eq. (20) above. It can be seen from Fig. 2

that the idle time and thus inefficiency occurs at the

beginning of the forward computations, at the end of

the backward computations, and during the switch from

the forward to the backward steps. Many techniques have

been devised to utilize this idle time. One possibility is to

perform data-independent calculations, such as the

evaluation of the derivatives for the other directions.

A more elaborate approach is proposed by Povitsky,

which reschedules the pipeline so that the local but

data-dependent Runge-Kutta procedure can be done at

the stage where the standard PTA is idle. However,

these corrections suffer from the complex code structure

by mixing the tridiagonal solvers with the other

procedures.

Table III presents the optimal k1 and k2 for our tests.

As these values are functions of some parameters

dependent on the “now/then” status of the machine, it is

not possible to achieve exactly the least CPU time at each

run. For example, Fig. 3(a) presents the CPU times for the

case with a different number of lines in the backward-step

packets when 16 processors are involved. It can be seen

that the optimal k2 from Eq. (20) corresponds to the case

with almost, but not exactly, the least CPU time.

The comparison of speedup from various parallel

algorithms is shown in Fig. 3(b). From this figure, it can be

seen that all of the three parallel strategies have good

scalability but the PTA procedure has the least speedup.

However, the advantage of PTA is that it can recover the

results of a serial Thomas algorithm exactly while the

parallelized one-sided method for both the filter and

difference schemes might lose some accuracy near the

region of inter-domain interfaces.

Parallel Computations with FDL3DI

In order to establish the feasibility of the parallel strategies

discussed in this paper, a simple two-dimensional vortex

advection problem was analyzed using the simplest

possible partition–a one-dimensional partition in the

x-direction. Both sequential multiblock and parallel

procedures were implemented in the AFRL code

FDL3DI and the computations were carried out on the

IBM SP2 system at the Cornell Theory Center. To explore

the issues involved, consider the unsteady inviscid flow

resulting from a convecting vortex in an otherwise

uniform flow at a freestream Mach number M1 ¼ 0:1:
The initial flow field and vortex strength are set as in

Visbal and Gaitonde (1998). The domain considered is

26 , X , 18;26 , Y , 6: The z-direction is a dummy

for which 7 grid points are used. To test for the accuracy of

the calculations, we use a uniform mesh of 60 £ 30 £ 7;
and two processors. The domain decomposition is located

at X ¼ 6: Figure 4 displays the vorticity contour maps

obtained for various compact and filter schemes and

boundary condition types (i.e. periodic versus non-

periodic).

FIGURE 2 A four-processor sample schedule for the PTA method. The
first column is the time sequence while the 2nd to 5th represent the four
processors. “0”, “1”, and “ 2 1” denote idle stage, forward and backward
computations, respectively; ! , ˆ denote send and receive
communication, respectively. (P ¼ 4; k1 ¼ 27; k2 ¼ 31; Nv ¼ 120).

TABLE III The optimal number of lines for FS and BS in PTA

Processors 2 4 8 16

(k1, k2) (47, 54) (27, 31) (18, 21) (12, 14)

PARALLEL HIGH-ORDER FORMULAS 475

The notations used in Gaitonde and Visbal (1998) will

be adopted to simplify the reference to the different

compact and filter schemes. When periodic conditions are

employed, the notation Cn will be used to denote an nth-

order compact differencing scheme. When the specifica-

tion of boundary treatment is important, the precise

scheme will be denoted with five numbers, a; b; c; d; e

where a through e are numbers denoting the order of

accuracy of the formulas employed, respectively, at points

1, 2, {3,. . .,IL-2}, IL-1 and IL, where IL is the number of

nodal points. For example, 24642 consist of a sixth-order

interior compact formula, which degrades to 4th- and 2nd-

order accuracy near the boundary. For the filter scheme,

the interior order will be designated with its order of

accuracy superscripted with the value of a parameter, af .

For example, F100.3 represents a tenth-order filter with

af ¼ 0:3: When boundaries are present, the notation for

the boundary filter formulas consists of simply appending

the interior filter with the order of accuracy of the formulas

at each of the boundary points 1,2,. . . in sequence. If a

point is left unfiltered, the value 0 is utilized. For example,

F100.4 20, 6, 8, 8, 8 consists of an af ¼ 0:4 tenth-order

interior filter formula which degrades to 8th-, 8th-, 8th-,

and 6th-order accuracy as the boundary is approached

FIGURE 3 CPU time performance of PTA and a comparison of the speedup of PTA with those of OOP and PDD: (a) uses 16 processors with 120 £ 60
points in each processor; (b) also uses 120 £ 60 grid points in each processor.

F. LADEINDE et al.476

from the interior. For this example, the point on the

boundary is not filtered. Furthermore, some of the case

studies represent a permutation from the following

schemes:

1. Compact differencing using either one-sided (symbol

“O”) or the PDD algorithm (symbol “P”).

2. Compact filtering using either one-sided (symbol “O”)

or the PDD algorithm (symbol “P”).

FIGURE 4 Parallel vortex advection computations with FDL3DI, showing qualitative accuracy in procedures that use the one-sided method, the PDD
method, and their combination for compact differencing and filtering. The abbreviations used in the figure are defined in the text.

PARALLEL HIGH-ORDER FORMULAS 477

FIGURE 4 Continued.

F. LADEINDE et al.478

3. Execution in a sequential multiblock mode (symbol

“S”) or parallel mode (symbol “P”).

4. Periodic and non-periodic boundary conditions

(symbols “P” and “NP”).

5. Viscous and inviscid computations (symbols “V”

and “I”).

The notation for a case study is presented in the ordered

form G1G2G3=G4 2 G5; where “Gi” stands for the

appropriate notation for index “i ” chosen from the

five schemes above. As an example, the notation

POS/P-I implies a case study that uses the PDD

algorithm for compact differencing, one-sided algorithm

for the filtering, is executed sequentially, involves the use

of periodic boundary conditions, and pertains to inviscid

computations. Note that the notation for the case study

excludes information on the specific compact differencing

or the filter scheme, whose notations have been defined

above. The use of “SD” in place of G1G2G3 implies a

single domain calculation. For example, SD/NP-V implies

a single domain calculation for a viscous, non-periodic

problem. Note that the one-sided and PDD algo-

rithms pertain to multiblock or parallel implementation of

TDMA.

The calculation for the vortex advection problem uses

the C4 compact scheme coupled with an interior filter of

tenth-order accuracy and an LOC (lower-order centered)

boundary filter scheme, F100.4 2 0, 2, 4, 6, 8. Certain

observations are apparent from Fig. 4. The one-sided

multiblock schemes, when used for compact differencing

and filtering, give acceptable results for parallel

computations [Fig. 4(b)]. The combination of PDD for

compact differencing and the one-sided scheme for

filtering also shows similar behavior [Fig. 4(c)]. However,

the case studies that use PDD for both compact

differencing and filtering in parallel mode, i.e. PPP,

calculate totally wrong results (not shown) when low-

order filters such as F40.4 20, 2 were used. The use of

high-order filters for PPP proved to be too expensive and

hence could not be pursued. The sequential implemen-

tation, PPS, gave accurate results, provided a high-order

filter is used. PDD for compact differencing, without

filters, works, but is of little interest since filters must be

used for most of the Navier–Stokes problems. Finally, in

the present study, a successful implementation of PDD

in FDL3DI was feasible only when the procedure was

combined with the one-sided method, as in POP.

Table IV shows the CPU time performance for

selected cases from the inviscid and viscous vortex

advection calculations with FDL3DI using the mesh

ð60 £ 30 £ 7Þ and carrying out the calculations for five

time steps. Tables IV(a) and (b) use two processors

whereas Table IV(c) uses 2, 4, 8, and 16 processors.

Although viscous calculations of vortex advection are

shown in the tables, the intention is not to assess

the accuracy, as there are no analytical solutions for the

viscous vortex advection case. A comparison of the

relative CPU time for the viscous and inviscid

calculations is of interest. In the current implementation,

the tables show that the cost of the viscous calculations is

quite high relative to that for the inviscid calculations.

The numbers in the table show that adding filters might

not lead to too much computational overhead for realistic

problems, which are invariably viscous. Note that the

data in parentheses in Table IV(b) excludes the

communication time.

Parallel efficiency, T1=nTn; speedup Sn ¼ T1=Tn; and

overhead, Tc=Tn can be obtained from the data in the

table, where n; T1; Tn; and Tc are the number of

processors, the CPU time for a sequential, single-domain

calculation, the CPU time for n processors, and the

communication time, respectively. In Table IV(b), Tc

TABLE IV (a) Total CPU time, T1, (s) for sequential (multiblock) implementation with two subdomains in x and a grid size of
ðNx;Ny;NzÞ ¼ ð60 £ 30 £ 7Þ. (b) Total CPU time, Tn, (s) for parallel implementation with two processes in x and a grid size of
ðNx;Ny;NzÞ ¼ ð60 £ 30 £ 7Þ. (c) Total CPU time, Tn, (s) for parallel implementation with several process topologies and a grid size of ðNx;Ny;NzÞ ¼
ð240 £ 120 £ 14Þ

Periodic (no filter) Non-periodic (no filter) Periodic (with filter) Non-periodic (with filter)

(a)
OOS/*-I – 10.71 – 11.84
PPS/*-I 7.69 7.50 8.75 8.66
SD/*-I 7.61 6.09 8.65 7.89
SD/*-V 36.70 32.81 37.75 33.86

(b)
OPP/*-I – 3.64 (3.55) – 4.25 (4.03)
POP/*-I – 5.89 (3.95) – 6.31 (4.66)
PPP/*-I – 5.76 (3.95) – 6.46 (4.44) (LOC)
PPP/*-V – 30.87 (19.74) – 30.84 (20.13)

(c)
SD/*-I 342.72 305.38 401.47 343.38
OOP/*-I (2 £ 1 £ 1 procs) – 153.11 – 173.72
OOP/*-I (2 £ 2 £ 1 procs) – 79.82 – 90.84
OOP/*-I (2 £ 2 £ 2 procs) – 56.58 – 65.03
OOP/*-I (4 £ 2 £ 2 procs) – 27.52 – 30.92

PARALLEL HIGH-ORDER FORMULAS 479

TABLE V Performance data for sequential and parallel (OOP) calculation of laminar boundary layer

Proc. No. 1 2 2 4 4 8 8 16

Proc. dim. (1,1,1) (2,1,1) (1,2,1) (4,1,1) (2,2,1) (2,4,1) (2,2,2) (2,4,2)
OOP CPU 41.92 43.82 44.85 45.33 48.43 50.29 53.03 54.37
Seq. Grid 54000 108000 108000 216000 216000 432000 432000 884000
Seq. CPU 42.79 93.82 93.33 192.64 198.04 410.07 419.92 862.86

For OOP, the size of the grid in each processor is 60 £ 30 £ 30: For the sequential calculations, the grid points in ðx; y; zÞ corresponding to each of the eight parallel cases are
ð60; 30; 30Þ; ð120; 30; 30Þ; ð60; 60; 30Þ; ð240; 30; 30Þ; ð120; 60; 30Þ; ð120; 120; 30Þ; ð120; 60; 60Þ and ð120; 120; 60Þ: The abbreviations “Proc”, “dim” and “seq” in the table
denote “processor”, “dimension” and “sequential”, respectively.

FIGURE 5 The speedup associated with the vortex advection computations with FDL3DI: (a) filter turned off (b) filter turned on.

F. LADEINDE et al.480

for a case study is obtained by subtracting the data in

parentheses. From Tables IV and V, only the case study

OOP shows interesting parallel performance (efficiency

of 88% and 92% for filtered and unfiltered cases,

respectively). Efficiency values of 98% and 99% can be

observed in Table IV(c) for the case of two processors.

Due to the increased communication cost relative to the

cost of computation, the parallel performance deteriorates

with increasing number of processors since the problem

size is fixed. A second reason is that the overlapped depth

becomes relatively larger. Some of these observations are

contained in Fig. 5(a and b), which show the speedup

(without filter), using FDL3DI. The results were also

obtained with five time steps for a system with a grid size

of 240 £ 120 £ 14: (The grid size of 60 £ 30 £ 7 is too

small for meaningful parallel computing.)

For the cases shown in the figures, the performance is

excellent until P ¼ 8 when the z-direction goes through

decomposition. Obviously, more grid points are needed in

the z-direction in order to obtain a more reasonable

performance than the one shown in Fig. 5(a and b).

The deviation from the idealized speedup also results

FIGURE 6 Parallel performance of the boundary layer computations with FDL3DI using the OOP parallelization strategy. Note that Fig. 6(b) pertains
to the single-domain computations.

PARALLEL HIGH-ORDER FORMULAS 481

from the fact that OOP requires extra calculations for

the overlap region. The same situation occurs for PPP.

Although the performance of PPP is worse than that of

OOP, the situation improves (Fig. 1) as the grid size

becomes large, with PPP showing improved performance.

The practical observation is consistent with the theoretical

analysis shown earlier in this paper. The same can be

said of POP since the scheme is exactly PPP with the

filter turned off in the calculations. Figure 5(b)

shows similar performance as the filtering scheme is

turned on.

The parallel performance of the one-sided schemes

(OOP), which Fig. 5 shows to be superior to that of PPP, is

further investigated for 3D splitting in which each

processor computed the grid 60 £ 30 £ 30 in ðx; y; zÞ:
This is the useful grid in that it excludes two of the five

grid points shared with the neighboring processor in

the overlap region on each side of a subdomain.

Another reason for our interest in OOP is the simplicity

of the procedure, which means that it can be applied to

realistic systems. The physical domain calculated here is a

laminar boundary layer flow. Sequential calculations

FIGURE 7 Assessment of the error from the interface treatment compared to the single-domain results: (a) Results of the gradient of a sharp signal
using a total of 51 grid points with five in the overlapped region; (b) Euclidean norm error versus grid numbers.

F. LADEINDE et al.482

corresponding to each parallel case are needed in order to

calculate speedup. The base sequential mesh is 60 £ 30 £

30 or 54 £ 103 grid points. The results, which are shown in

Fig. 6(a and b) are quite interesting, as discussed below.

The grid layout in the ðx; y; zÞ directions of the sequential

mesh is chosen to mimic the processor decomposition for

OOP. Thus, for the OOP decomposition 2 £ 4 £ 1; for

example, the grid layout for the sequential calculation

is ð120; 120; 30Þ; or ð60 £ 2; 30 £ 4; 30 £ 1Þ; which is

432 £ 103 nodal points. Table V shows that processor

decomposition [e.g. ð2; 1; 1Þ versus ð1; 2; 1Þ] does not

significantly affect the CPU time performance. Also, for

the sequential calculations, the total number of grid points,

not the grid layout in ðx; y; zÞ; governs the performance.

Scalability results are presented in Fig. 6(a), wherein the

speedup is plotted against the number of processors; each

processor calculates 60 £ 30 £ 30:
In Fig. 6(b), the CPU time performance is presented as a

function of the number of grid points for the sequential

calculations. The (ideal) solid line in this figure is based on

a linear scaling of the CPU time with the grid point, using

the grid 60 £ 30 £ 30 (or 54 £ 103 grid points) as the base

for the extrapolation. It is evident that the observed CPU

performance (dashed line) does not scale linearly with the

number of grid points. In general, if the CPU time for

the sequential calculation of the base grid (54 £ 103 grid

points) is T0, that for the sequential calculation of 54 £

n £ 103 grid points, say Tsn, is greater than nT0, as shown

by the larger values of the dashed line data over the

corresponding solid line results [Fig. 6(b)]. The speedup is

Tsn=T0 þ Tc: That is, the speedup can go above n

[Fig. 6(a)], depending on the values of ðTsn 2 nT0Þ

relative to Tc. Note that for all cases, T0 is the same

because, even though the size of the sequential problem

(and hence Tsn) changes, that in each processor (and hence

T0) is fixed.

The integrity of sub-domain interface treatment in

FDL3DI is important for the proposed procedure. The

results in Fig. 7(a and b) have been included to show the

performance of the interface treatment. The function f2
defined in Ladeinde et al. (2001) and its derivative were

computed using the same overlapping scheme as used for

the FDL3DI code. The one-dimensional domain is

decomposed into two sub-domains, with the interface

located within the region of strong gradients. The number

of grid points is 51, with five in the overlap region.

Figure 7(a) shows very accurate calculations from the

interface treatment relative to the single domain results.

The L2 error analysis also supports this observation

[Fig. 7(b)].

The application of the proposed method to vortex

advection does not demonstrate the validity of the method

FIGURE 8 (a) Coarse grid model of X24C reentry vehicle showing the surface mesh ðJ ¼ 0Þ; (b) Acoustic pressure distribution on surface along the X
(axial) direction; (c) Acoustic pressure distribution on surface along the Z (circumferential) direction. The lines labelled “S” in the figure represent the
interface between subdomains in the parallel implementation.

PARALLEL HIGH-ORDER FORMULAS 483

to problems with strong nonlinearity. Furthermore, it

needs to be demonstrated that the algorithm works when

the flow direction is not parallel to the interface boundary.

In order to demonstrate these capabilities, the proposed

method was applied to a complicated aeroacoustic

phenomenon over realistic configurations. This involves

the scattering of a spherical pulse by a generic aerospace

vehicle (the X24C) for which a body-fitted grid system

was readily available. The pulse is specified as

p ¼ p1 þ ee
2ln 2

ðx2xcÞ
2þð y2yc Þ

2þðz2zcÞ
2

b 2 ;

where

p1 ¼
1

gM2
1

; e ¼ 0:01; b2 ¼ 0:1

and
xc ¼ 0:2978; yc ¼ 0:2995; zc ¼ 0:

A sixth-order compact scheme is used in the interior

with fourth-order on the boundary. The interior filter is

tenth-order, whereas the four nodes in the vicinity of the

boundary (including interface boundaries) use filter

schemes of orders 2, 4, 6 and 8, respectively. The

calculations were done with the third-order, implicit

Beam-Warming procedure using Dt ¼ 1023: Note that the

use of RK4 for this problem required a Dt that is two

orders of magnitude smaller than this value. The

calculations were done for two grids: 120 £ 80 £ 121

and 60 £ 40 £ 61: The domain is decomposed as 2 £ 2 £ 2

and mapped into eight processors on SGI 2100. The

transformed curvilinear coordinates j(i), h(j), z(k) are

aligned with the streamline, body normal, and transverse

directions, respectively. Figure 8(a) shows the surface grid

ðJ ¼ 0Þ: A projected view of the acoustic pressure

distribution on the surface I ¼ 45 along the X (axial)

direction is shown in Fig. 8(b). Figure 8(c) shows the

K ¼ 30 surface along the Z (circumferential) direction.

The integrity of the domain interface treatment is evident,

at least qualitatively, from the figures. Note that the

acoustic simulation exercise for the X24C re-entry

vehicle, as shown above, is preliminary and has not

been examined in detail from a numerical perspective.

However, the calculations do not show any unusual

behavior for this complicated problem. Therefore, the

proposed high-order parallelization algorithm appears to

hold promise for the analysis of complex aerodynamic

configurations.

CONCLUSION

The implicit operators associated with the compact

schemes pose difficulties for parallel implementation for

the solution of the Navier–Stokes equations. Three

methods were selected for study in this paper: the one-

sided method, the PDD method, and the PTA method.

These parallel procedures were implemented in the AFRL

code, FDL3DI. Kernel codes were also developed for these

methods to extract some inherent performance features.

The main findings from this work can be summarized as

follows. Compared with PPP, the OOP procedure leads to

faster calculations of the vortex advection problem. Also,

the PPP procedure cannot accurately calculate this

problem when low-order filters are used. On the other

hand, high-order filters cause the procedure to be

significantly more expensive. The sequential implemen-

tation of the one-sided method showed that the calculation

time does not scale linearly with the number of grid points.

This leads to a super-scalable parallel performance when

the number of processors is few. For PDD, increasing the

number of grid points in the difference direction leads to

better parallel performance. Also, the use of multiple right-

hand side (RHS) columns leads to better performance

relative to a series of parallel PDD calculations for single

columns. Increasing the number of columns significantly

increases the speedup.

In standard implementation (i.e. without engaging the

processors during the idle time), the PTA procedure has a

very poor parallel performance in comparison to PDD and

the one-sided formulations. Note that all three procedures

lead to very scalable parallel codes, although the PTA

procedure tends to be more accurate. The reasons for the

poor parallel performance of PTA include the large idle

time and the large number of small messages associated

with the procedure. Procedures have been suggested that

engage the processors during the idle time. Povitsky

recently presented the IBPTA (Immediate Backstep

Calculation PTA) procedure, which reschedules the

pipelined procedure so that the local (but data-dependent

Runge-Kutta procedure) could be done at the temporal

regimes where the standard PTA is idle. This correction

leads to a very unwieldy procedure for FDL3DI that might

not be suitable for realistic aerodynamic systems and was

therefore not pursued.

Acknowledgements

This work was supported in part by the DoD HPCMO

Common High Performance Computing Software Support

Initiative (CHSSI). Aerospace Research Corp., LI, a

Subsidiary of Thaerocomp Technical Corp., is a Corporate

Partner of Cornell University and some of the parallel

computations reported in this paper were carried out at the

Cornell Theory Center.

References

Cai, X., O’Brien, E.E. and Ladeinde, F. (1996) “Uniform mean scalar
gradient in grid turbulence: asymptotic probability distribution of a
passive scalar”, The Physics of Fluids 8(9), 2555–2558.

Cai, X., Ladeinde, F. and O’Brien, E.E. (1997) “DNS on SP2 with MPI”,
In: Liu, C. and Liu, Z., eds, Advances in DNS/LES (Greyden
Publishing, Columbus, OH), pp 491–495.

Cai, X., O’Brien, E.E. and Ladeinde, F. (1997) “Thermodynamic
behavior in decaying, compressible turbulence with initially
dominant temperature fluctuations”, The Physics of Fluids 9(6),
1754–1763.

F. LADEINDE et al.484

Cai, X. (1999) “Derivation of the theoretical performance of various
parallel methods”. Internal Report. Report #: ARC-REG-MV99-02R.
Aerospace Research Corp., LI.

Gaitonde, D. and Visbal, M.R. (1998) “High-order schemes for Navier–
Stokes equations: algorithm and implementation into FDL3DI”.
Technical Report# AFRL-VA-WP-TR-1998-3060, Air Force
Research Laboratory, Wright-Patterson AFB, OH.

Gaitonde, D. and Visbal, M.R. (1999) “Further development of a Navier–
Stokes solution procedure based on higher-order formulas”. AIAA
Paper 99-0557.

Ladeinde, F. (1992) “Challenges posed for parallel processing on the
iPSC/860 supercomputer by DNS schemes of supersonic flows”,
In: Pelz, R.B., Ecer, A. and Hauser, J., eds, Parallel Fluid Dynamics
(Elsevier, Amsterdam), pp 253–266.

Ladeinde, F., O’Brien, E.E., Cai, X. and Liu, W. (1995) “Advection by
polytropic compressible turbulence”, The Physics of Fluids 48(11),
2848–2857.

Ladeinde, F., O’Brien, E.E. and Cai, X. (1996) “An efficient parallelized
ENO procedure for direct numerical simulation of turbulence”,
The Journal of Scientific Computing 38(11), 215–242.

Ladeinde, F., Cai, X.D., Visbal, M.R. and Gaitonde, D. (2001)
“Turbulence spectral characteristics of high order schemes for direct
and large eddy simulation”, Applied Numerical Mathematics
36, 447–474.

Lele, S.K. (1992) “Compact finite difference schemes with spectral-like
resolution”, Journal of Computational Physics 103, 16–42.

Povitsky, A. “Parallel directionally split solver based on reformulation of
pipelined Thomas algorithm”. ICASE Report No. 98-45.

Povitsky, A., Morris, P.J. “A parallel compact multi-dimensional
numerical algorithm with aeroacoustics applications”. ICASE Report
No. 99-34.

Shu, C.-W., Zang, T.A., Erlebacher, G., Whitaker, D. and Osher, S.
(1992) “High order ENO schemes applied to two- and three-
dimensional compressible flow”, Applied Numerical Mathematics 9,
45–71.

Sun, X.-H. and Moitra, S. (1996) “A fast parallel tridiagonal algorithm for
a class CFD applications”, NASA TP 3585.

Visbal, M.R., Gaitonde, D.V. (1998) “High-order accurate methods for
unsteady vortical flows on curvilinear meshes”. Paper AIAA-98-0131,
Reno, NV.

PARALLEL HIGH-ORDER FORMULAS 485

