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The Effects of Pipe Geometry
on Fluid Flow in a Muon Collider
Particle Production System
Liquid mercury has been investigated as a potential high-Z target for the production of
muon particles for the Muon Collider project. This paper investigates the dynamics of
mercury flow in a design of the target delivery system, with the objective of determining
pipe configurations that yield weak turbulence intensities at the exit of the pipe. Eight
curved pipe geometries with various half-bend angles and with/without nozzles in the exit
region are studied. A theoretical analysis is carried out for steady laminar incompressi-
ble flow, whereby the terms representing the curvature effects are examined. Subsequent
simulations of the turbulent flow regime in the pipes are based on a realizable k � e
Reynolds-Averaged Navier–Stokes (RANS) equations approach. The effects of half-bend
angles and the presence of a nozzle on the momentum thickness and turbulence intensity
at the exit plane of the curved pipe are discussed, as are the implications for the target
delivery pipe designs. [DOI: 10.1115/1.4027176]

1 Introduction

The MERIT experiment at CERN [1,2] is a proof-of-principle
test for a target system that converts a 4MW proton beam into a
high-intensity muon beam for either a neutrino factory complex
or a muon collider (see Fig. 1). The mercury jet issues from the
nozzle at the end of a delivery pipe to form a target that intercepts
an intense proton beam inside a 15T solenoid magnet. The use of
liquid targets overcomes the problematic effects of solid targets
such as the melting/vaporization of components, damage by
beam-induced pressure waves for pulsed beams, and extensive
radiation damage. Additionally, liquid target systems offer the
advantage of the continuous regeneration of the target volume.
However, the design of the mercury delivery pipe introduces new
challenges.

The MERIT experiment uses a 180 deg bend, which has half-
bend angles of 90 deg in the shape of a “U” for the delivery of the
mercury. This geometry complicates the flow relative to that in a
straight pipe and, arguably, affects the quality of the jet. Since the
quality of the jet greatly influences the production of muon par-
ticles, it is pertinent to investigate the dynamics of the flow of
mercury in the 180 deg bend, with a focus on the exit-flow results.
Furthermore, for optimum muon particle production, the mercury
flow should be near laminar. Four half-bend angles of 0 deg
30 deg 60 deg, and 90 deg have been chosen for investigation in
this paper. For each configuration, a pipe with/without a nozzle is
studied.

Eustice [3,4] is among the first to demonstrate the existence of
a secondary flow in a curved pipe, an observation he made
from injecting ink into water flowing through a pipe. Dean [5,6]
introduces a parameter which bears his name (Dean number,
De � Red1=2, where Re is the Reynolds number based on the
area-averaged mean velocity through a pipe of diameter 2a and d
is the curvature ratio (d � a=R, where R is radius of curvature)
used to characterize the magnitude and shape of the secondary
motion inside a loosely coiled pipe (d� 1). Subsequent work
by others have investigated curved pipes with different values of
R. Adler [7] presents the experimental results of laminar and

turbulent flows in three pipes with different R values. Rowe [8]
investigates turbulent water flows for a curvature ratio of
d ¼ 1=24 in a circular 180 deg bend. The total pressure and yaw
angle relative to the bend axis are measured for the Reynolds
number Re ¼ 236; 000. Enayat et al. [9] reports on the axial com-
ponents of the mean and fluctuating velocities for the turbulent
water flow in a circular 90 deg bend for a d value of 1=5:6 and for
a wide range of Reynolds numbers. Azzola et al. [10] computes
and measures the developed turbulent flow in a 180 deg bend for
d ¼ 1=6.75 and Re ¼ 57; 400 and 110,000, using the standard
k � e model. Answer et al. [11] measures the Reynolds stresses
and mean velocity components in vertical and horizontal planes
containing the pipe axis for air flow in a 180 deg bend, with
d ¼ 1=13 and Re ¼ 50; 000. Sudo et al. [12] reports on the meas-
urements of the turbulent flow through a circular 90 deg bend with
d ¼ 1=4. Sudo and co-workers [13] also measure turbulent air
flow in a 180 deg circular bend for the same d value, but with
Re ¼ 60; 000. The axial, radial, and circumferential components
of the mean velocity and the corresponding components of the
Reynolds stress tensor are reported. H€uttl et al. [14] investigate
the influence of curvature and torsion on the turbulent flow in
helically-coiled pipes for Res ¼ 230, where Res is the mean fric-
tion velocity (us)-based Reynolds number. The pipe curvature is
found to induce a secondary flow with a strong effect on the fluid
dynamics. Rudolf et al. [15] study the flow characteristics in sev-
eral curved ducts: a single elbow to coupled elbows in the shapes
of “U,” “S.” and the spatial right angle position, for a fixed value
of d ¼ 1=4 and Re ¼ 60; 000.

Fig. 1 Sectional view of the target supply pipe of the MERIT
experiment. The mercury jet generated at the end of the nozzle
is on top of the nominal beam trajectory (both the mercury jet
and proton beam move from right to left in this figure).
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The uniqueness of the present study can be found in the effects
of the half-bend angle u (as shown in Fig. 2) and the presence of
a nozzle in the exit region of eight pipe configurations on the
momentum thickness and turbulence intensity at the pipe exit.
The curvature ratios match those of the pipes that are tested in the
MERIT experiment. The investigated pipe geometries are shown
in Fig. 3.

2 Theoretical Analysis

2.1 Governing Equations. The motion of a fluid particle in a
pipe segment, assuming isothermal conditions, is governed by the
conservation of mass and momentum in the flow. The cylindrical
polar coordinate system (r; h; z) is used for the baseline straight
pipe of the circular cross section, where r is the radial distance, h
is the azimuthal angle, and z is the axial coordinate direction. The
vector (u,v,w), in dimensional form, denotes the components of
the instantaneous velocity in the r, h, and z coordinate directions,
respectively. Steady state and incompressible flow conditions are
assumed. The nondimensional continuity equation in a straight
pipe can be written as

Lcðu�; v�;w�Þ ¼ 0 (1)

where ðu�; v�;w�Þ are the nondimensional components of the
instantaneous velocity.

The nondimensional momentum equations in the normalized
r�, h�, and z� coordinate directions of the straight pipe can be
written as

LMi
ðu�; v�;w�Þ ¼ 0 (2)

where i ¼ 1, 2, and 3 refer to the r�, h�, and z� components,
respectively. Thus Ref. [16],
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The scales for nondimensionalization are as follows:

u� ¼ u=Ub; v� ¼ v=Ub; w� ¼ w=Ub;

r� ¼ r=a; z� ¼ z=a; p� ¼ p=qU2
b ; Re � 2aUbq

l
(7)

where p is the reduced pressure, q is the mass density of fluid, a is
the radius of the circular pipe, and Ub is the bulk velocity

Ub ¼

ð
uðr; hÞrdrdhð

rdrdh
(8)

where uðr; hÞ is the instantaneous axial velocity component. The
Laplacian operator r�2 is
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The motion of a fluid in a curved pipe whose centerline varies
locally in a two-dimensional plane will be described in the curvi-
linear coordinates (r; h; ~z), as shown in Fig. 4. The coordinates r
and h are the same as those defined for a straight pipe, while ~z is a
coordinate direction, which is positive along the flow direction
and is tangential to the pipe centerline. The coordinates (r; h; ~z)
are a right-handed system and are always mutually orthogonal
when the pipe centerline is a two-dimensional curve [17]. The
vector (u,v,w) represents the instantaneous velocity components in
the r, h, and ~z coordinate directions, respectively.

Murata [17] has analyzed the steady laminar motion of a fluid
through pipes of a circular cross section, assuming small center-
line curvatures. We use his model as the starting point for identi-
fying the sources of secondary flows and compare the velocity
distributions associated with such sources to one obtained from
a computational fluid dynamics analysis of the same physical
problem. For this purpose, we consider a pipe profile of the
form y ¼ b sinðnxÞ (see Fig. 4), where b ¼ 0:1;…; 1; 2; 3;… and
n ¼ 0:05; 0:1;…; 1;…. We illustrate with the results for b ¼ 3:0
and n ¼ 0:1. The results will be examined at the arbitrary point
x ¼ 60, where the flow is already fully developed. The following
relations are defined

Fig. 2 Coordinates along a curved pipe
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Compared to Eqs. (4) through (6), the additional terms can be
nondimensionalized using the following scales:
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The nondimensional continuity and momentum equations can
then be written as follows:

Continuity

~Lcðu�; v�;w�Þ ¼ 0 (15)

where
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Momentum

~LMi
ðu�; v�;w�Þ ¼ 0 (17)

Fig. 3 Configurations of the pipes investigated: without nozzles (u1=u2 5 (a-1) 0 deg/0 deg, (b-1) 30 deg/30 deg, (c-1) 60 deg/
60 deg, and (d-1) 90 deg/90 deg); with nozzles (u1=u2 5 (a-2) 0 deg/0 deg, (b-2) 30 deg/30 deg, (c-3) 60 deg/60 deg, and (d-2)
90 deg/90 deg)

Fig. 4 Curvilinear coordinates for the periodically-curved pipe
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where
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2.2 Understanding the Secondary Flows. To better under-
stand the secondary flows in a curved pipe, we compare the gov-
erning equations for a curved pipe with those for a straight pipe
and study the terms that represent the differences between two
sets of equations. We decompose the equations for a curved pipe
as follows:

~Lcðu�; v�;w�Þ ¼ Lcðu�; v�;w�Þ þ D�c (21)

~LM1
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where the first terms on the right-hand side of the equations repre-
sent the contribution of a straight pipe and the remaining terms
are due to the curvature. For fully-developed laminar flow in a
straight pipe D�c ¼ D�r ¼ D�h ¼ D�~z ¼ 0; g33 ¼ 0;jc ¼ 0;L ¼ 0;

Ck�
ij ¼ 0; u� ¼ v� ¼ 0, and w� ¼ w�ðr�Þ. For fully-developed lam-

inar flow in the sinusoidal pipe configuration (y ¼ b sinðnxÞ),
Eqs. (10) to (13) and the conditions u� ¼ u�ðr�; h�Þ;
v� ¼ v�ðr�; h�Þ, and w� ¼ w�ðr�; h�Þ lead to the following simpli-
fication of the curvature terms:
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We propose that Eqs. (26) and (27) describe the secondary
flows in a curved pipe. To test this hypothesis, we evaluate these
terms (D�r and D�h) using velocities obtained from a straight pipe
and compare the results to the velocities (u� and v�) obtained
directly from a numerical simulation of the flow in the curved
pipe. Physically, D�r and D�h represent inertial forces due to the
presence of the curvature, with units in Newton’s when expressed
in dimensional form. The profiles of u� and v� are plotted in
Figs. 5(a) and 5(b), respectively.

The iso-contours of D�r and D�h are obtained by substituting the
straight-pipe velocity solutions into the expressions for these
terms. The results are shown in Figs. 5(c) and 5(d). The qualitative
similarity between Figs. 5(a) (Figs. 5(b)) and 5(c) (Fig. 5(d)) sup-
port the suggestion that the previously identified inertial terms
determine the secondary flow in curved pipes. The inertial terms
identified in this paper are consistent with the centrifugal force
terms discussed in Berger et al. [18]. It is also important to note
that D�r and D�h do not include the terms v�2=r� and u�v�=r�,
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respectively. Although these other terms were referred to as cen-
trifugal force terms by Webster and Humphrey [19], it seems as if
the significance of these terms is found in their ability to promote
instability, even in a straight pipe.

The authors acknowledge that the procedure just described for
identifying the secondary flow terms in the equations is ad hoc. A
more rigorous approach could try to isolate explicit physically-
meaningful terms in the momentum equations in the same manner
that the Navier–Stokes equations in a rotating frame of reference
introduce the additional terms q½x� x� rþ 2x� u� [20],
which, respectively, consist of the centrifugal and Coriolis force
fields. (Here, x, r, and u are the vectors of the angular velocity,
position, and instantaneous rotating frame velocity, respectively.)
The present problem appears to be more complicated and the fore-
going analysis has been undertaken only for the insight.

3 Numerical Simulations

A RANS equation approach will suffice for the current prob-
lem in which the fluid is bounded by a circular no-slip wall and
the interest is mainly on the mean flow. The Reynolds stress
model (RSM) [21] has been judged to be the most accurate
RANS model for turbulent flow in curved pipes, since it includes
memory effects and the effects of streamline curvature. However,
the RSM is a six-equation model that is computationally expen-
sive for practical engineering problems. Several options exist for
the simpler one- or two-equation RANS approaches, including
the Spalart–Allmaras (SA), [22] standard k � e (SKE) [23], and
realizable k � e (RKE) [24] models. A curved-pipe flow problem
is simulated with these methods for the purpose of down
selection.

The test conditions are taken from Sudo [12] and consist of a
90 deg bend with d ¼ 1=4 (see Fig. 6). The pipe has a 100-
diameter upstream tangent section and a 40-diameter downstream
tangent section. The results are compared in Fig. 7 for the static
pressure coefficient Cp at 17:6 diameters upstream of the bend.

The variable s is a pseudo coordinate direction, which is intro-
duced in this section for the purpose of describing the locations on
the straight (tangent) portions of the pipe. In Sudo’s measure-
ments, the upstream tangent is �1 � s � 0� and the region after
the bend is 0þ � s � 5. Note that h ¼ �90 deg is the convex side
of the bend, while h ¼ 90 deg is the concave side, which is con-
sistent with the use in Sudo’s experiment. Fairly close agreement
between the methods is apparent. However, the RKE results

Fig. 6 The sketch of a curved pipe with a 90 deg bend. Here,
CV implies “convex (inner) side,” CC is the “concave (outer)
side,” (xc ;yc) denotes the curvature center, and R is the radius
of curvature.

Fig. 5 Contour plots of (a) u�, and (b) v � at x 5 60 of the periodically-curved pipe (Re 5 1000)
and contour plots of (c) D�r , and (d) D�h based on the straight pipe velocity field. Here, CV implies
“convex (inner) side,” CC is the “concave (outer) side.”

Journal of Fluids Engineering OCTOBER 2014, Vol. 136 / 101203-5

Downloaded From: http://fluidsengineering.asmedigitalcollection.asme.org/ on 11/05/2014 Terms of Use: http://asme.org/terms



match the experimental data better than the results from the SA
and SKE models for the three locations plotted in Fig. 7. Thus, the
RKE model has been selected for use in subsequent pipe calcula-
tions in this paper.

Since mercury flow becomes fully-developed long before
approaching the first 90 deg half-bend angle, this geometry has
been simplified by shortening the inflow section. The eight geo-
metries investigated (see Fig. 3) have length dimensions that are
the same as in the MERIT experiment: the pipe radius is a, the
curvature radius R ¼ 2:33a, and the inflow and outflow lengths of
the straight pipe are matched, with and without a nozzle at the exit
region. The investigated half-bend angles u1=u2 are 0 deg =0 deg,
30 deg =30 deg, 60 deg =60 deg, and 90 deg =90 deg. The Reynolds
number, based on the bulk velocity and pipe diameter, is approxi-
mately equal to 8:244� 105 at the inlet but the value in the vicin-
ity of the exit in tapered tubes is approximately 1:813� 106. The
Dean number is 5:401� 105.

The computational grid points are 3:7� 106 	 5� 106 and
3:9� 106 	 5:8� 106 for pipes of various half-bend angles with-
out and with nozzles, respectively. The first mesh size in the r
direction uses 5:56� 10�5 pipe diameters, which corresponds to a
yþ of approximately 0:94. Note that approximately 30 grid points
are located within yþ < 30. We use 48 grid points in the circum-
ferential direction and the grid density is 1:8 deg =node in the
vicinity of the bend.

4 Results and Discussion

The three-dimensional incompressible RANS are solved to pre-
dict the turbulent flow of mercury inside the pipes. The mean flow
(U�;P�) is related to the total or instantaneous (u�; p�) and fluctu-
ating (ðu0Þ�; ðp0Þ�) components as follows:

u� ¼ U� þ ðu0Þ� (29)

p� ¼ P� þ ðp0Þ� (30)

The governing equations for the mean flow can be expressed in
terms of mass conservation (continuity)

r� 
 U� ¼ 0 (31)

and momentum conservation

U� 
 r�U� ¼ � 1

q�
r�P� þ 1

Re
r� 
 s� (32)

The shear stress tensor s� is modeled as

s�ij ¼ ð�� þ ��t Þ
@U�i
@x�j
þ
@U�j
@x�i

 !
(33)

and the eddy viscosity is computed from

��t ¼ Cl
k�2

e�
(34)

where k� is the kinetic energy of turbulence, k� � ð1=2Þððu0Þ�2

þðv0Þ�2 þ ðw0Þ�2Þ, and e� is its dissipation rate. Here, Cl is
modeled as [24]

Cl ¼
1

A0 þ As
k�Uð�Þ

e�

(35)

where

Uð�Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S�ijS

�
ij þ X

�
ijX
�
ij

q
(36)

S�ij ¼
1

2
ðU�i;j þ U�j;iÞ (37)

X
�
ij ¼

1

2
ðU�i;j � U�j;iÞ (38)

where S�ij is the symmetric part of the velocity gradient tensor,
with X

�
ij the antisymmetric part. The model constants A0 and As

are given as [24]

A0 ¼ 4:04; As ¼
ffiffiffi
6
p

cos / (39)

where

/ ¼ 1

3
cos�1ð

ffiffiffi
6
p

WÞ; W ¼
S�ijS

�
jkS�ki

~S�3
; ~S� ¼

ffiffiffiffiffiffiffiffiffiffi
S�ijS

�
ij

q
(40)

The nondimensional equations for k� and e� can then be written as
[24]

U� 
 r�k� ¼ r� 1

Re
þ 1

rkRet

� �
r�k�

� �
þ G�t � e� (41)

U� 
 r�e� ¼ r� 1

Re
þ 1

reRet

� �
r�e�

� �

þ C1S�e� � C2

1

a

e�2

k� þ
ffiffiffiffiffiffiffiffiffi
��e�
p (42)

where rk and re are the turbulent Prandtl numbers for k� and e�,
respectively. Here, Ret is the Reynolds number based on the eddy
viscosity (see Eq. (34)).

Fig. 7 Longitudinal distribution of static pressure at the convex (h 5 290 deg),
concave (h 5 90 deg), and bottom (h 5 0 deg) regions of the 90 deg bend
(Re 5 60,000)
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The production of turbulence kinetic energy G�t is evaluated in
a manner consistent with the Boussinesq hypothesis

G�t ¼ 2
1

Ret
S�ij �

2

3
k�dij

� �
U�i;j (43)

The coefficients in Eqs. (41) and (42) are shown in the Table 1.
The inlet velocity for all pipes is that of a fully developed flow in
a straight pipe aligned with the z-direction

U� ¼ V� ¼ 0; W� ¼ W�ðr�Þ (44)

The discrete form of W�ðr�Þ is taken as the solution at the exit
of a straight pipe obtained from an auxiliary simulation with the
axial velocity profile shown in Fig. 8. At the inlet, the mean pres-
sure is P ¼ 30 bar, while the turbulence conditions are

k� ¼ 3

2
ðU�IÞ2; e� ¼

C3=4
l k� 3=2

l�
(45)

where I is the turbulence intensity I ¼ 0:16Re�1=8. Note that this
expression for I is consistent with the definition used for this vari-
able later in the paper (see Eq. (49)). However, the value of k� at
the inlet (see Eq. (45)) is not explicitly known to the authors from
the source of the inlet data, although it has presumably been

factored into the expression for the inlet value of I. The values of
Cl and l� are

Cl ¼ 0:09; l� ¼ 0:07D�h (46)

and D�h ¼ 2. The no-slip conditions are specified at the wall

U� ¼ V� ¼ W� ¼ 0 (47)

while zero-gradient conditions are assumed at the pipe exit

r�nU� ¼ r�nV� ¼ r�nW� ¼ r�nP� ¼ 
 
 
 ¼ 0 (48)

where r�n � @�=@n� and “n�” is the outward-pointing normal at
the outlet.

One goal of the present study is to determine the pipe configu-
ration that has the potential to give the least disturbance in the cir-
cular jet shear layer that eventually issues from the nozzle.

Table 1 The constants for the RKE model

rk re C1 C2 Ret

1.0 1.2
max 0:43;

g
gþ 5

� �
a 1.9 0.185727

e
Clk�2

aNote that g ¼ S�k�=e� and S� ¼
ffiffiffi
2
p

~S�.

Fig. 8 Fully developed normalized velocity profile at the pipe
inlet

Fig. 9 Momentum thickness distribution at the exit plane of the pipes with
half-bend angles of: (a) 0 deg/0 deg, (b) 30 deg/30 deg, (c) 60 deg/60 deg, and (d)
90 deg/90 deg. These pipes have nozzles and h 5 180 deg, 0 deg correspond to the
convex and concave sides of the pipes, respectively.
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Therefore, some knowledge of the distribution of the momentum
thickness dh at the nozzle exit becomes important. For example,
the linear stability analysis of Michalke [25] and Plaschko [26]
and the experimental work of Cohen and Wygnanski [27], Corke
et al. [28], and Corke and Kusek [29] showed that for 2a=dh � 1,
both the axisymmetric (m ¼ 0) and the first spinning or helical
instability modes (m ¼ 61) are unstable in the initial jet shear
layer.

4.1 Momentum Thickness. The polar distribution of dh is
shown in Figs. 9 and 10 for pipes without and with nozzles,
respectively. The number “0” in the polar plots refers to the wall,
while the numbers “1,” “2,” and “3,” respectively, refer to the dis-
tances 0:1a, 0:2a, and 0:3a measured from the wall. The
momentum thickness decreases with decreasing radius. For pipes
without nozzles (see Fig. 9), the distribution of dh is nonuniform
at the exit but appears to be similar for the different pipes. The
azimuthal variation of dh becomes stronger as the half-bend angle
increases. Thus, the 90 deg =90 deg shows the strongest azimuthal
variation of dh compared to other pipes. At the exit plane, dh
attains its minimum value at h ¼ 0 deg and its maximum value at
h ¼ 180 deg. Note that the straight pipe does not show an
azimuthal variation of dh. Figure 10 shows a fairly uniform dh dis-
tribution for all pipes when nozzles are present at the exit.

The differences in the azimuthal variation of dh can be
explained by the relationship between the momentum thickness
and axial velocity, where the latter, at the pipe exit, is shown in
Figs. 12 through 15 for the various pipe configurations. Note that
the 90 deg =90 deg pipe shows the most asymmetry in the distribu-
tion of the axial velocity (see Fig. 15) and, hence, in the azimuthal
distribution of dh. For pipes with nozzles, the axial velocity is
fairly uniform in the azimuth, which explains the uniform azi-
muthal distribution of dh.

4.2 Turbulence Intensity. The turbulence intensity at the
exit of the pipes is of interest, as it arguably determines the turbu-
lence level in the jet (not shown). This quantity is defined in this
paper as

I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

k�

U�2b

� �s
(49)

where k� is the turbulence kinetic energy per unit mass and U�b
has been used as a reference for defining the turbulence inten-
sity. The radial distribution of I at the exit plane along the hori-
zontal direction is presented in Fig. 11. Here, I is found to have
high values near the walls, with a large gradient for all pipes.
We observe that I is significantly reduced when a nozzle is pres-
ent. For the pipe without a nozzle, I increases as the half-bend
angle increases. For example, the 90 deg =90 deg pipe has the
strongest turbulence intensity. The radial distribution of I is
symmetric for the straight pipe (0 deg =0 deg) with a flat interior,
as expected. The profile of I with r� along the horizontal direc-
tion for the 30 deg =30 deg, 60 deg =60 deg, and 90 deg =90 deg
pipes without nozzles shows higher values near r� ¼ �1 (the
inner side) compared to r� ¼ 1 (the outer side). The higher val-
ues of I on the inner side for the pipe without a nozzle are
related to the instabilities associated with an adverse pressure
gradient. With nozzles, there is a steeper radial gradient of I
near wall in the 0 deg =0 deg, 30 deg =30 deg, 60 deg =60 deg, and
90 deg =90 deg pipes compared to those without nozzles. Here, I
is nearly flat in the interior region (�0:6 < r� < 0.6). In the
region of �1 < r� < �0:6, I has relatively higher values when
the half-bend angle is 30 deg compared to other cases. Generally
speaking, the straight pipe with a nozzle shows the least turbu-
lence intensity among all eight pipes.

Fig. 10 Momentum thickness distribution at the exit plane of the pipes with
half-bend angles of: (a) 0 deg/0 deg, (b) 30 deg/30 deg, (c) 60 deg/60 deg, and (d)
90 deg/90 deg. These pipes have nozzles and h 5 180 deg, 0 deg correspond to the
convex and concave sides of the pipes, respectively.
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4.3 Axial Velocity Distribution. As stated earlier, the pseudo
coordinate distance s is used to describe the locations of points in
the straight portions of the pipe, while the bend angles u1 and u2

are used for the curved portions. These coordinates are depicted in
Fig. 2. The upstream tangents of all of the curved pipes investi-
gated in this paper are of the same length (�5:17 � s � 0�); so
are the downstream tangents (0þ � s � 8:3375). Figures 12
through 15 show the radial (r�) axial-velocity (U�) distribution for
pipes without a nozzle. Note that the effects of the bend angle on
the flow in the curved pipes are presented only for the cases with-
out nozzles.

In Fig. 12, the velocity distribution is identical for the three val-
ues of distance s examined, since there is no bend and the flow
has already reached the fully developed profile at the inlet of the

pipe. However, for the curved pipes and when s ¼ 0�, the convex
(inner) side of the pipe (near r� ¼ �1) shows higher magnitudes
of U� compared to the concave (outer) side of the pipe. This is
also the case at the end of the first bend for the 30 deg =30 deg and
60 deg =60 deg pipes. Note that u1 ¼ 30 deg (see Fig. 13) and
60 deg (see Fig. 14), respectively, for this location in the two

Fig. 12 Radial distribution of the U� in the 0 deg/0 deg pipe

Fig. 13 Radial distribution of U� in the 30 deg/30 deg pipe

Fig. 14 Radial distribution of U� in the 60 deg/60 deg pipe

Fig. 15 Radial distribution of U� in the 90 deg/90 deg pipe

Fig. 11 The horizontal distribution of the turbulence intensity
at the exit plane. The subscripts “nzl” and “nnzl” denote the
presence or absence of a nozzle at the pipe exit.

Fig. 16 Radial distribution of U� in the 0 deg/0 deg pipe without
(squares) and with (triangles) a nozzle at the following 3 loca-
tions along the pipe: (a) s 5 0�, (b) s 5 4:032, and (c) s 5 8:3375
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pipes. The velocity magnitude decreases as the fluid passes
through the first bend and the velocity distribution for the
90 deg =90 deg pipe is more complicated compared to that for the
30 deg =30 deg and 60 deg =60 deg pipes. For example, unlike

the latter, which show a monotonic distribution in the interior, the
former shows an oscillating flow pattern (see Fig. 15). For loca-
tions after u1 ¼ 30 deg, we observe that the maximum velocity
magnitude has shifted to the vicinity of r� ¼ 1.

Fig. 17 Radial distribution of U� in the 30 deg/30 deg pipe
without (squares) and with (triangles) a nozzle at the following
five locations along the pipe: (a) s 5 0�, (b) u1 5 30 deg, (c)
u2 5 30 deg, (d) s 5 4:032, and (e) s 5 8:3375

Fig. 18 Radial distribution of U� between the 60 deg/60 deg
pipe without (squares) and with (triangles) a nozzle at the fol-
lowing five locations along the pipe: (a) s 5 0�, (b) u1 5 60 deg,
(c) u2 5 60 deg, (d) s 5 4:032, and (e) s 5 8:3375
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The presence of a nozzle at the exit of the straight pipe does not
significantly affect the radial distribution of the axial velocity (see
Fig. 16). At s ¼ 0�, the effect is totally negligible, whereas some

small (insignificant) effects can be observed at s ¼ 4:032 and
s ¼ 8:3375.

For the 30 deg =30 deg pipe (see Fig. 17), the nozzle does not
significantly affect the velocity distribution until at the end of the
pipe (s ¼ 8:3375), at which location the nozzle tends to flatten the
velocity distribution in the interior. Similar observations were
made for the 60 deg =60 deg (see Fig. 18), and 90 deg =90 deg (see
Figs. 19 and 20) pipes. Also common to all curved pipes is the ob-
servation of some back flows (negative U�) that appear after
the first bend. The magnitude of the back flow increases with the
increasing half-bend angle. However, in all cases, the back flow
has disappeared by the time the flow reaches the location
s ¼ 4:032. Because of the bend, the flow loses kinetic energy,

Fig. 19 Radial distribution of U� between the 90 deg/90 deg
pipe without (squares) and with (triangles) a nozzle at the fol-
lowing five locations along the pipe: (a) s 5 0�, (b) u1 5 30 deg,
(c) u1 5 60 deg, (d) u1 5 90 deg, and (e) u2 5 0 deg

Fig. 20 Radial distribution of U� between the 90 deg/90 deg
pipe without (squares) and with (triangles) a nozzle at the
following four locations along the pipe: (f) u2 5 30 deg, (g)
u2 5 90 deg, (h) s 5 4:032, and (i) s 5 8:3375
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leading to an increase in the static pressure and, hence, an adverse
pressure gradient. The 90 deg =90 deg pipe loses more energy than
the 30 deg =30 deg and 60 deg =60 deg pipes. Therefore, the
90 deg =90 deg pipe shows a larger magnitude for the reverse
flow.

5 Conclusion

The objective of this study is to comparatively evaluate various
pipe configurations that have been proposed for liquid target
delivery in the Muon Collider project. The desirable configura-
tions are those that lead to the weakest turbulence intensity levels
and uniform momentum thickness at the exit plane. Eight pipe
configurations with different half-bend angles are studied, without
and with nozzles at the exit region of the pipes. A simple analyti-
cal study is performed to describe the laminar flow in curved
pipes, in relation to the terms representing curvature effects. The
realizable k � e (RKE) RANS model has been applied to simulate
turbulent flows in the pipes. At the exit plane of the pipe without a
nozzle, dh is smaller at h ¼ 0 deg relative to the value at
h ¼ 180 deg (see Fig. 9), where a lower level of turbulence inten-
sity occurs. The effects of the nozzle include the azimuthal ho-
mogenization of the flow and, hence, a uniform velocity, and a
corresponding uniform azimuthal distribution of dh. The nozzle
also significantly reduces the turbulence intensity at the pipe exit.
However, the straight pipe has the least turbulence intensity
because of the absence of secondary flows. From the effects of the
half-bend angles and nozzles shown in this study, a straight pipe
with a convergent nozzle was found to give the weakest turbu-
lence intensity level at the exit plane.
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Nomenclature

De ¼ Dean number
D�c ¼ curvature terms in the continuity equation
D�r ¼ curvature terms in the r-momentum equation
D�~z ¼ curvature terms in the ~z-momentum equation
D�h ¼ curvature terms in the h-momentum equation

I ¼ turbulence intensity (%)
k ¼ turbulence kinetic energy (m2=s

2
)

l� ¼ nondimensional turbulent characteristic length
Lc ¼ continuity equation for flow in a curved pipe
~Lc ¼ continuity equation for flow in a straight pipe

LM1
¼ r-momentum equation for flow in a curved pipe

LM2
¼ h-momentum equation for flow in a curved pipe

LM3
¼ z-momentum equation for flow in a curved pipe

~LM1
¼ r-momentum equation for flow in a straight pipe

~LM2
¼ h-momentum equation for flow in a straight pipe

~LM3 ¼ z-momentum equation for flow in a straight pipe
s ¼ pseudo coordinate direction

Ub ¼ bulk velocity (m=s)
�� ¼ nondimensional kinematic viscosity
��t ¼ nondimensional eddy viscosity
d ¼ curvature ratio

dh ¼ momentum thickness (m)
e ¼ turbulence kinetic energy dissipation (m2=s

3
)

rk ¼ turbulent Prandtl number for j
re ¼ turbulent Prandtl number for e
s� ¼ nondimensional shear stress tensor
u ¼ pseudo bend angle coordinate direction
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