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Abstract

The comparative resolution of the high wavenumber portion of compressible turbulence energy spectrum by
some high order numerical schemes is presented in this paper. Included in this are the essentially nonoscillatory
(ENO) schemes, the weighted essentially nonoscillatory schemes (WENO), and the compact differencing schemes.
The governing equations are the Navier–Stokes equations and the objective is to identify the numerical scheme
that best represents the physics of compressible turbulence. Mach numbersM1 values of 0.1, 0.5 and 0.7 are
studied. The compact differencing schemes need filters for numerical stability. It is found in this work that a
parameter in the filter scheme provides some flexibility for controlling the physical turbulence energy transfer
rate at high wavenumbers, vis-à-vis the numerical dissipation at those scales. Although the ENO schemes do
not require filters for numerical stability, the present study shows that the addition of filters improves the energy
transfer process at high wavenumbers. Without filtering, with relatively coarse grids, numerical turbulence caused
by stencil adaptation persists. This limits the useful wavenumber resolution range of the ENO schemes. The WENO
schemes do not require the stabilizing filters but the results tend to be slightly more dissipative. Finally, at low
Mach numbers, the current compact differencing and filter scheme formulation gives better results but as the Mach
number increases the relative suitability of the ENO method increases. 2001 IMACS. Published by Elsevier
Science B.V. All rights reserved.
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1. Introduction

This paper continues the search for the “best” high order numerical method for the direct numerical
simulation (DNS) and large eddy simulation (LES) of compressible turbulence. Two promising
candidates are the compact and essentially nonoscillatory (ENO) schemes, or combinations thereof.
Although many quantities are calculated and presented, the main focus of this paper is on the differential
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representation of the spectral distribution of turbulence energy by the various schemes. This quantity is
of tremendous importance in theoretical turbulence and most of the current understanding of turbulence
energy cascade are based on it. This paper compares the ability of the compact schemes, the ENO
schemes, the weighted ENO (WENO) schemes, and the pseudospectral schemes to represent the decay
of turbulence spectral energy. Included in the present study are the effects of the compact filters and filter
parameters on the compact differencing results, as well as the commutativity of filtering and compact
differencing. This paper also extends the standard ENO scheme by combining it with compact filters in
an attempt to improve the ENO results at the high wavenumber end of the turbulence energy spectrum.

The vehicle used for the study is the decaying homogeneous turbulence problem of Ghosh and
Matthaeus [7], hereafter referred to as GM, who employed the pseudospectral method. The first direct
numerical simulation of two-dimensional isotropic compressible turbulence was reported by Passot and
Pouqet [15]. The GM problem was chosen because of the thorough theoretical treatment. The problem is
also two-dimensional which, compared to its three-dimensional counterpart, makes it more affordable
and hence more suitable for the kind of parametric study undertaken in this paper. Note that the
computational cost associated with the parametric nature of the present studies precludes meaningful
three-dimensional turbulence calculations. The consequence of using a two-dimensional model instead
of three might not be that serious. From spectral energy standpoint, the differences between two-
dimensional and three-dimensional turbulence are explainable in terms ofaliasing. This phenomenon
occurs at the larger scales (small wave numbers) of flow. On the other hand, the focus of the present
paper is on the behavior at the high wave numbers, where the turbulence is isotropic and independent of
the dimensionality of the flow. Therefore, a two-dimensional model appears suitable and the basic results
are not expected to be different in three dimensions. Note that the reference pseudospectral results were
generated in Ref. [7]. Although the geometry in GM is rectangular, the formulation for both the ENO and
compact schemes assumes a complex geometry and hence uses a curvilinear coordinate transformation.
The unsteady, two-dimensional, viscous Navier–Stokes equations are solved in strong conservation form
using the generalized curvilinear coordinates(ξ, η):
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whereU = {ρ,ρu,ρv,ρEt} is the solution vector,J is the Jacobian of the transformation,F,G are the
inviscid fluxes andFv,Gv are the viscous fluxes.

The initial condition for this problem is of the pseudosound type and is obtained by first solving for
the fluctuating pressurep′ from the Poisson equation for the incompressible component of the initial
velocity field:

∇2p′ = −γM2
1∇
(
uI · ∇uI

)
,

where the right-hand side of this equation is due solely to the solenoidal velocity componentuI from
random numbers. The pseudosound density fluctuation is obtained from the relationδρPS= (1/γ )p′ and
the initial pressure and density fields areP = 1+p′ andρ = 1+ δρPS. The imposed turbulence spectrum
is chosen to match that in GM:
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{
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√

12,
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where “i” is an index defined byi − 1
2 � k � i + 1

2, with k =
√
k2
x + k2

y andkx , ky are the turbulence
wavenumbers in thex- andy-directions, respectively. The Mach number isM1 = 0.5 and the Reynolds
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number is 250. As in GM, a grid of 642 is sufficient to resolve all scales of flow. The computational
length of the domain runs from 0.0 to 7.081 units in bothx andy (and as noted above, although the grid
is uniform, a full curvilinear coordinate transformation is used). Results for 2562 are also analyzed for
grid dependence. The gas is assumed to be polytropic, withP = ργ andT (temperature)= ργ−1γM2

1 .

Note that the total energy equation is solved, nevertheless.

2. Compact differencing

In the framework of compact differencing, the derivativeu′ for any generic variableu in the
transformed coordinate frame is represented as [6,13,23]:

αu′
i−1 + u′

i + αu′
i+1 = bui+2 − ui−2

4 ξ
+ aui+1 − ui−1

2 ξ
, (2)

whereα, a, and b are constants which determine the spatial properties of the algorithm. The base
compact differencing schemes used in this paper are the three-point, fourth order scheme C4 with
(α, a, b) = (1

4,
3
2,0), the five-point, sixth order scheme C6 with(α, a, b) = (1

3,
14
9 ,

1
9). Also used is the

five-point, fourth order scheme O5 with(α, a, b) = (0.430816,1.6205440,0.2410880). This scheme
minimizes the dispersion error over the entire range of wavenumbers up to 2 points per wave. Note
that the symbolu above also represents vector quantities such as theU vector defined in Eq. (1).

Eq. (2) is used to calculate the various derivatives in the(ξ, η) plane, as well as the metrics
from coordinate transformation. The inviscid fluxes in the Navier–Stokes equations are formed in the
transformed coordinates at each nodal point and the components differentiated using Eq. (2). The same
coefficients(α, a, b) are used for both the metrics and the fluxes, which is useful in reducing the error
on stretched meshes [5,22]. To calculate the viscous and heat conduction terms, the primitive variables
u= {ρ,ρu,ρv,ρEt} are first compact differentiated to form the stress tensor and heat flux vector. The
viscous and heat conduction terms of the flow equations are then computed by another application of
Eq. (2). The use of second derivative compact formulations, as in Ref. [13], has some advantages but
could lead to excessive computational penalty on curvilinear coordinates.

The compact formulas for the domain boundary points are well known; the present work is based on the
boundary formulas in Refs. [6,23]. Time integration of the ODE that results from the spatial integration
was based on the classical fourth order Runge–Kutta scheme [4].

2.1. Spatial filtering

Numerical instability is often encountered in the solution of the Navier–Stokes equations with compact
differencing. The sources of instability include boundary condition implementation, unresolved scales,
mesh non-uniformities, and the nonlinearity of the flow equations. Spurious waves amplify and destroy
the solution if left unchecked. Artificial dissipation, wherein a small additive damping term is explicitly
added to the governing equations, is a popular method for suppressing the instabilities. However, this
method is undesirable for calculations intended to examine the physics of the flow, such as direct
numerical simulation (DNS) or large-eddy simulation (LES) of turbulence. The newly rediscovered
alternative method of filtering is of interest in this paper because of recent development of high order
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filters that match the high order compact differencing of the flow equations. In the formulation, the
filtered values̃u for any quantityu in the transformed plane is represented as [6,13,23]:

αf ũi−1 + ũi + αf ũi+1 =
N∑
n=0

an

2
(ui+n + ui−n). (3)

This representation provides a non-dispersive, 2N th-order filter with 2N + 1 point stencil. The spectral
functionF for this scheme can be represented as

F(ω)=
∑N
n=0 an cos(nω)

1+ 2αf cos(ω)
,

whereω is the normalized wavenumberω = 2πk/N, N = L/h, k is the physical wavenumber,L is
domain length andh is the grid spacing. The eighth and tenth order filters are used in the present work,
for which the coefficients are:
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)
.

(4)

The foregoing filters are a subset of the more elaborate ones proposed by Gaitonde and Visbal [6]. For
the convenience of reference, we will refer to their filters as VG filters. The boundary treatments in VG
filters are available in the reference.

2.2. Commutativity of filtering and compact differencing

It is interesting to explore the commutativity of the filtering and compact differencing operations. To
this end, the filter scheme can be written in a matrix form as

FΦ̃ =MΦ
and the compact differencing scheme as

PΦ ′ =NΦ.
Pre-filtering, i.e., filtering before compact differencing produces(

Φ̃
)′ = P−1NΦ̃ = (

P−1N
)(
F−1M

)
Φ =ABΦ,

whereas, post-filtering, i.e., compact differencing before filtering gives(̃
Φ ′)= (

F−1M
)(
P−1N

)
Φ = BAΦ,

whereΦ, Φ̃,Φ ′, (̃Φ ′), and (Φ̃)′ are n × 1 vectors andF,M,P,N are n × n matrices. In general,
AB �= BA, and the two operations do not commute. However, for the special case of periodic boundary
conditions,A andB are symmetric and pre-filtering and post-filtering produce identical results. We have
confirmed this result in the numerical calculations of known functions, as shown later with periodic and
Dirichlet boundary conditions.
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3. ENO and WENO schemes

ENO schemes were first developed in Refs. [8,9]. Shu and Osher [19,20] simplified the original
procedure, while Refs. [1–3,11,12,21] have applied Shu’s version of ENO to simulate compressible
turbulence. The WENO schemes are more recent and are attributable to the work of Liu et al. [14]
and Jiang and Shu [10]. An excellent review article on ENO and WENO is available in Shu [18].

For the present paper, the ENO/WENO procedure pertains to the differencing of the convective terms
of the Navier–Stokes equations in a way that avoids discretization across very strong gradients. (The
viscous terms are discretized with fourth order central schemes.) Thus, based on the Navier–Stokes
equations in (1), the ENO problem can be written as

ut (ξ, η, t)+ fξ(u(ξ, η, t))+ gη(u(ξ, η, t))= 0, (5)

where it is apparent thatu,f, and g are vector functions. The convective terms are reconstructed to
accuracyk, which is taken as 3 or 4 in the present work. The basic ENO differencing problem is

duij
dt

= − 1

 ξ

(
f̂i+1/2,j − f̂i−1/2,j

)− 1

 η

(
ĝi,j+1/2 − ĝi,j−1/2

)= f ′ + g′ + O
(
 ξk, ηk

)
≡ L(u). (6)

The method of lines is used, so the time derivative is suppressed in the following development. The
specific ENO/WENO procedure used in this work will be illustrated with the calculation off̂i+1/2,j ,

and sufficient details will be given to allow the reproduction of the results in this paper. Many options
are possible with the ENO or WENO schemes, as the paper by Shu [18] summarizes. The base ENO
scheme in the present paper, which uses the procedure by Shu, focuses on the characteristic-wise high
order finite differencing with Roe speed and Lax–Friedrichs flux-splitting. The specific approach is now
summarized:

1. The divided (or undivided differences) off (u) andu are computed for alli in the grid, withj
frozen.

2. At each fixedξi+1/2,j , we:
(i) Compute the average stateui+1/2,j using a Roe average satisfying the mean value theorem.

(ii) Compute the right and left eigenvectors, the eigenvalues of the Jacobian∂f /∂u evaluated at
(i + 1

2, j). Denote the eigenvectors by

R =R(ui+1/2,j ), R−1 =R−1(ui+1/2,j ),

respectively.
(iii) Determine the potential stencil for the ENO and WENO reconstruction off̂i+1/2,j using the

value of k, the current point(i + 1
2, j) and the specification of a “preferred” or one-point

upwind stencil.
(iv) Transform those differences computed in step 1 above which are contained in the potential

stencil using the modal matrices:

vm =R−1um, hm =R−1f (um)

for m in a neighborhood ofi.



452 F. Ladeinde et al. / Applied Numerical Mathematics 36 (2001) 447–474

(v) For each component of the characteristic variables, obtain the corresponding component of the
characteristic numerical fluxh±

i+1/2,j as follows:
• Split the fluxh:

h(v)= h+(v)+ h−(v).
With Roe speeds and Lax–Friedrichs splitting, this procedure makes available the values
h+(vi) andh−(vi), which can be considered as cell centroid or cell average values(h)+(vi)
and(h)−(vi) in relation to the cell boundary.

• Starting from the two-point stencil

S(i)= {ξi}
and adding points to the stencil in the ENO fashion (i.e., by comparing divided or undivided
differences), we compute high order cell boundary values as

ĥ+
i+1/2,j ≡ (

h+
i+1/2,j

)− =
k−1∑
m=0

crm
(
h
)+
i−r+m,

ĥ−
i+1/2,j ≡ (

h−
i+1/2,j

)+ =
k−1∑
m=0

c̃rm
(
h
)−
i−r+m+1,

wherecrm is the Lagrange interpolation:

crm =
(

k∑
p=m+1

∑
l=0,l �=p

∏k
q=0,q �=p,l(ξi+1/2 − ξi−r+q−1/2)∏k

l=0,l �=p(ξi−r+p−1/2 − ξi−r+l−1/2)

)
 ξi−r+m.

Thus, the reconstructed fluxes, in characteristic space, atξi+1/2 areĥ−
i+1/2,j andĥ+

i+1/2,j .

• ĥ−
i+1/2,j andĥ+

i+1/2,j are transformed back to the physical space using

f̂ ±
i+1/2 =Rĥ±

i+1/2,j .

The boundary fluxf̂ ±
i−1/2 is obtained in a similar fashion, as are theη derivativesĝ±

i+1/2 and
ĝ±
i−1/2. Hence, Eq. (6) becomes an ODE for the calculation ofuij (t), for which we used

procedures in Refs. [19,20].
• For WENO, one uses a convex combination of all the candidate stencils, instead of using

just one of these. If

Sr(i)= {ξi−r , . . . , ξi−r+k−1}, r = 0, . . . , k− 1,

denotes ther th stencil, the valueh(r)i+1/2,j would be calculated from formulas of the form

ĥ+
i+1/2,j ≡ (

h+
i+1/2,j

)− =
k−1∑
r=0

ωr

k−1∑
m=0

crm
(
h
)+
i−r+m,

ĥ−
i+1/2,j ≡ (

h−
i+1/2,j

)+ =
k−1∑
r=0

ω̃r

k−1∑
m=0

c̃rm
(
h
)−
i−r+m+1.

The determination of the weightsωr andω̃r is described in detail elsewhere [10,18]. Note
that for WENO,

hi+1/2,j = h(ξi+1/2,j )+ O
(
 ξ2k−1),
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meaning that WENO is theoretically more accurate than ENO(2k−1 versusk) for the same
stencil size.

3.1. Filtered ENO

Unlike the compact scheme solution of the Navier–Stokes equations where the use of filters is usually
indicated for stability, ENO calculations are stable without filters. However, our investigation of the high
wavenumber end of ENO-generated turbulence spectrum has shown that the spectral energy (both kinetic
and internal) does not go to zero the way it should, based on homogeneous turbulence theory. Thus, there
is a residual energy at the high wavenumbers which appears to be due to the numerics. The adaptive
stencil in ENO causes some high wavenumber oscillations which manifest as turbulence fluctuations. As
shown later in this paper, this numerical turbulence is absent in the filtered compact differencing scheme
results for the Navier–Stokes simulations as well as in the WENO results at comparable grid resolution.
It is also absent in the ENO results in very fine grid resolutions. To remedy this problem with the standard
ENO scheme, we have extended the ENO method to use a subset of the compact-based VG filters. The
formulation follows that presented earlier except that the filters are applied to the computed ENO results
at a predetermined frequency during the time stepping of the solution. Thus, Eq. (3) is applied with the
quantityu being the ENO result and̃u, its corresponding filtered value. The previous discussions on the
spectral functionF(ω) and the free parameterαf also hold.

4. Turbulence spectra

The objective of the present study is to compare the turbulence spectra from different high order
schemes. Although a semi-analytical method for assessing the spectral response of finite-difference
schemes is proposed in Ref. [13], the relevance to turbulence simulation and modeling was not included
in the study; neither was the implementation of, and the comparison with, the ENO or WENO schemes.
In the present study turbulence spectra are presented for both the kinetic energyEk and internal energy
Ei and are discretized as follows:

Ek = 1

2

N/2∑
k=1

pk(k)n(k) and Ei =
N/2∑
k=1

pi(k)n(k),

whereN is the number of grid points andn(k) is the number of Fourier modes in thekth integer bin and
satisfies

n(k)=
k−1/2�

√
k2

1+k2
2<k+1/2∑

k1

∑
k2

1.

The functionspk(k), pi(k) are the spectra for the kinetic and internal energy components, respectively,
with the definition

pk(k)=
k−1/2�

√
k2

1+k2
2<k+1/2∑

k1

∑
k2

(
û2

1(k1, k2)+ û2
2(k1, k2)

)/
n(k),



454 F. Ladeinde et al. / Applied Numerical Mathematics 36 (2001) 447–474

û1(k1, k2)= 1

N1N2

N2∑
j=1

N1∑
i=1

u1(i, j)e
−̂i2πk1i/N1e−̂i2πk2j/N2,

û2(k1, k2)= 1

N1N2

N2∑
j=1

N1∑
i=1

u2(i, j)e
−̂i2πk1i/N1e−̂i2πk2j/N2.

The expression forpi(k) is similar, using the definition provided below forEint. Other spectrum-
related quantities include the longitudinal velocity component (UL), the transverse velocity component
(UT), and the turbulent velocity (UTurb), which can be discretized as

UL = 〈(
uL

1

)2 + (uL
2

)2〉1/2
,

UT = 〈(
uT

1

)2 + (uT
2

)2〉1/2

and

UTurb = 〈(
uTurb

1

)2 + (uTurb
2

)2〉1/2
,

where

uL(i, j)=
N1/2−1∑
k1=−N1/2

N2/2−1∑
k2=−N2/2

k
k1û1(k1, k2)+ k2û2(k1, k2)

(k2
1 + k2

2)
êi2πk1i/N1êi2πk2j/N2,

uT(i, j)=
N1/2−1∑
k1=−N1/2

N2/2−1∑
k2=−N2/2

(
û(k1, k2)− k

k1û1(k1, k2)+ k2û2(k1, k2)

(k2
1 + k2

2)

)
êi2πk1i/N1êi2πk2j/N2,

uTurb(i, j)=
√
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1+k2
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∑
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(
û(k1, k2)− k

k1û1(k1, k2)+ k2û2(k1, k2)

(k2
1 + k2

2)

)
êi2πk1i/N1êi2πk2j/N2.

The total kineticEk and internal energyEint are global quantities and can be defined as

Ek = 1

2

N1∑
i=1

N2∑
j=1

(
ρu2

1(i, j)+ ρu2
2(i, j)

)/
(N1N2)= 1

2

〈
u2

1 + u2
2

〉
,

Eint = 〈ργ 〉 − 〈ρ〉γ
M2

1γ (γ − 1)
.

5. Overall computational sequence

The sequence of the calculations for the Navier–Stokes problem can be summarized as follows:
1. Specify Mach numberM1, Reynolds number Re, and generate the turbulent pseudosound initial

conditions

u0 = (
ρ0, (ρu)0, (ρv)0,E0

)
,

by solving the Poisson equation.
2. Load the initial condition into the executable code for ENO, WENO, or the compact differencing

code.
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3. Start the time loop. At each time stepn carry out the following calculations:
(i) Determine the CFL for the time step.
(ii) ComputeL(un) in Eq. (6) using ENO, WENO, or the compact code.
(iii) Solve the ODE problem in Eq. (6) using the third order, TVD Runge–Kutta procedure

in Refs. [19,20] for ENO/WENO, and a standard fourth order, multi-step Runge–Kutta
procedure [4] for the compact code.

(iv) Calculate the filtered solutioñun, if compact differencing or filtered ENO scheme.
(v) ComputeM2

s (t
n), Ek(t

n),Eint(t
n) andUT(tn)/UL(tn).

(vi) ComputePkin(κ) andPint(κ) at desired values on the time stepn.
(vii) Test turbulence energy for laminarization. Terminate execution if flow becomes laminar or

repeat steps (i)–(vi) otherwise.

6. Results

6.1. Comparison of the basic high order schemes

To help isolate possible complications by the computational environments of the complete flow and
energy equations, such as upwinding, filtering, the effects of the viscous terms, and the procedure for
their discretization, the basic compact and ENO schemes were first used to calculate the derivatives of
two known functions of different derivative steepness. The error and resolution of moderately steep, but
continuous, gradients were calculated on several Unix workstations. This provides performance data for
the very basic forms of the two schemes and allows the evaluation of the effects of the various capabilities
and programming style differences contained in the codes finally used. The full DNS equations for
compressible flows, from subsonic to transonic Mach numbersMa will follow. The latter is based on
decaying homogeneous turbulence with pseudosound initial conditions and known initial turbulence
energy spectrum.

The functions for the basic tests are:

f1 = sin(x) (0� x � L1),

f3 = 1

2

(
tanh

(
x

a

)
− tanh

(
x − 0.1

a

))
, a = 0.02 (0 � x � L2).

Obviously, f1 is a much smoother function thanf2 (see Fig. 1). Periodic boundary conditions were
used forf1, so that the interior accuracy was retained at the boundaries for both schemes. Dirichlet end
conditions((f1)0 = (f1)L = 1) were also used in order to demonstrate the commutativity of compact
differencing and filtering. Periodic conditions were used at the two end points forf2. Domain lengths are
(L1,L2)= (5.5,10.0).

The notations used in Ref. [6] will be adopted to simplify the specification of the compact difference
schemes. When periodic conditions are employed, the notation Cn will be used to denote annth order
compact differencing scheme. When the specification of boundary treatment is important, the precise
scheme will be denoted with 5 numbers,a, b, c, d, e, wherea, . . . , e are numbers denoting the order of
accuracy of the formulas employed respectively at points 1,2, {3, . . . , IL − 2}, IL − 1 and IL, where IL is
the number of nodal points. For example, 24642 consists of a sixth-order interior compact formula, which
degrades to 4th- and 2nd-order accuracy near the boundary. For the filter scheme, the interior order will
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Fig. 1. A sketch of the functions used for the test of the basic compact and ENO algorithms: (a)f1, (b) f2.

be designated with its order of accuracy superscripted with the value of a parameterαf . For example,
F100.3 represents a tenth-order filter withαf = 0.3. When boundaries are present, the notation for the
boundary filter formulas consists of simply appending the interior filter with the order of accuracy of the
formulas at each of the boundary points 1,2, . . . in sequence. If a point is left unfiltered, the value 0 is
utilized. For example, F100.4-0.6.8.8.8 consists of anαf = 0.4 tenth-order interior filter formula which
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degrades to 8th-, 8th-, 8th-, and 6th-order accuracy as the boundary is approached from the interior. For
this example, the point on the boundary is not filtered.

The basic tests used a third-order treatment for ENO, whereas the compact scheme formula is 24642
along with the filter F100.3-0.2.4.6.8 for bothf1 andf2. The filter formula F20.3-0.2.2.2.2 was also applied
to f2, for the purpose of investigating filter effects. A kernel code has been written to measure the time
costs and numerical accuracy of the above schemes.

Figs. 1–4 are used to illustrate some behavior of the basic schemes. Fig. 2 shows the results for the
compact and ENO calculation of∂f1/∂x. For the compact schemes, results are shown for the pre-filtered,
post-filtered and the unfiltered cases. Figs. 2(a) and (b) differ in the boundary conditions: Fig. 2(a) uses
periodic boundary conditions on∂f1/∂x, whereas Fig. 2(b) uses Dirichlet condition((f1)0 = (f1)L = 1).
A grid of 10 points is sufficient for this problem.

From the figures, all schemes give essentially the same results except that compact differencing and
filtering are not commutative for the Dirichlet problem, in agreement with the simple mathematical
illustration above. Post-filtering gave results that were closer to the exact. Figs. 3 and 4 show the results
for ∂f2/∂x using the same schemes as in Fig. 2. The effects of the filter order for the compact calculation
are shown. Fig. 3(a) uses F100.3-0.2.4.6.8 whereas Fig. 3(b) uses F20.3-0.2.2.2.2. Both calculations use 6
grid points in the feature. While both the ENO and compact schemes miscalculate the feature at this grid
resolution level, the ENO results are better than the compact results in the sense that the latter exhibits
Gibbs-like phenomenon whereas the former does not. The effect of filter order on the compact difference
results are not apparent for this problem. Fig. 4 is a high-resolution version of Fig. 3, with 32 grid points
in the feature. The results for all schemes are identical at this grid resolution level.

The relative numerical accuracy of the two schemes is dependent on the smoothness of the test
function. When the test function is smooth, likef1, we obtain the numerical results that are consistent
with the formal analysis. In this case, the maximum accuracy orders (Table 1) are O( ξ6) and O( ξ5)

for the compact scheme with periodic and Dirichlet boundary conditions, respectively. The maximum
accuracy order for ENO (periodic) is O( ξ4). The loss of accuracy order when the grid is coarse is
believed to be caused by the boundary treatment in the compact scheme. The loss of accuracy order when
the grid is fine is caused by the round-off error induced by the computer. Table 1 lists the numerical errors
based on the second norm. The compact difference results include both periodic and Dirichlet boundary
conditions as well as “pre-filtering” and “post-filtering”. Table 2 represents the numerical errors of the
two schemes in the smooth regions off ′

2. When the jumps are resolved by using a finer mesh (Fig. 4),
the compact scheme restores its higher order resolution capabilities in the whole calculation domain,
although the ENO results also show high accuracy.

Note that becausef1 is smooth, filtering when the grid is coarse increases the error via unnecessary
dissipation whereas forf ′

2, which has a strong gradient, the filter helps to dampen out the errors when
the grid is coarse, leading to better accuracy than the unfiltered result. Also note that whereas the errors
associated with pre-filtering and post-filtering schemes are essentially the same forf ′

2, they differ forf ′
1,

with post-filtering showing the lower errors. The accuracy results forf ′
1 in the table are based on the

non-periodic case, whereas those forf ′
2 are based on periodic conditions. Agreement with the simple

mathematical illustration provided earlier is evident.
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Fig. 2. Comparison of compact and ENO calculation of the derivative of functionf1. (a) Periodic conditions.
The compact results include the cases with and without filters. Results for “pre-filtering” and “post-filtering” are
shown. (b) Dirichlet conditions. Only compact results are shown in (b) since the purpose of the figure is to illustrate
the differential behavior of boundary conditions on the commutativity of the compact differencing and filtering
operations.
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Fig. 3. Comparison of compact and ENO calculation of the derivative of functionf2. The effects of the order of
accuracy of the filter is also shown. (a) Tenth-order interior filter. (b) Second-order interior filter. Note that the
close-up view in the vicinity of the feature (high gradient region) is shown. The number of nodal points in the
feature is 6.
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Fig. 4. Comparison of compact and ENO calculation of the derivative of functionf2. The effects of the order of
accuracy of the filter is also shown. (a) Tenth-order interior filter. (b) Second-order interior filter. Note that the
close-up view in the vicinity of the feature (high gradient region) is shown. The number of nodal points in the
feature is 32.
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Table 1
Numerical errors in the evaluation off ′

1. “P” and “D” in the table imply “periodic” and “Dirichlet” boundary
conditions, respectively

Grid 10 102 103 104 105

ENO (P) 9.665×10−3 3.884× 10−6 1.307× 10−9 5.377× 10−13 4.242× 10−12

C6, no filter (P) 2.171×10−5 2.073× 10−11 2.444× 10−14 2.629× 10−13 2.915× 10−12

C6, pre-filter off1(P) 2.322×10−5 2.073× 10−11 4.833× 10−14 5.203× 10−13 5.180× 10−12

C6, post-filter off ′
1(P) 2.322×10−5 2.073× 10−11 1.624× 10−14 2.334× 10−13 2.374× 10−12

C6, no filter (D) 1.683×10−2 6.909× 10−7 2.191× 10−11 2.629× 10−13 2.915× 10−12

C6, pre-filter off1(D) 7.931×10−2 4.338× 10−4 1.380× 10−6 4.363× 10−9 1.468× 10−11

C6, post-filter off ′
1(D) 2.060×10−2 6.554× 10−5 2.081× 10−7 6.580× 10−10 3.159× 10−12

Table 2
Numerical errors in the smooth region off ′

2. Periodic boundary conditions are used

Grid 10 102 103 104 105

ENO 4.166×10−2 1.156×10−5 3.567×10−3 1.024× 10−6 3.235× 10−10

C6, no filter 2.306×10−1 1.466×10−1 8.639×10−9 1.593× 10−14 6.004× 10−14

C6, pre-filter off2 1.763×10−1 1.265×10−1 1.642×10−7 1.605× 10−14 4.879× 10−14

C6, post-filter off ′
2 1.772×10−1 1.265×10−1 1.642×10−7 1.559× 10−14 4.875× 10−14

6.2. High order calculation of decaying homogeneous turbulence

Certain characteristics of the decaying turbulence simulation will be pointed out before the results
are presented. To simulate isotropic turbulence, the initial conditions were based on random numbers.
This implies that the initial conditions would always be different for different levels of grid refinement
(for example, 642 versus 2562). This situation is independent of the fact that the random numbers are
scalable to desired initial rms values and spectral energy distribution. As a consequence, only certain
quantities can be compared between simulations that use different grid resolutions. Obviously, the
dependent variables(ρ, ρu,ρv,E,p) cannot be compared. However, the averaged quantities: temporal
total kinetic (Ek) and internal energy (Eint), temporal rms values, etc. can usually be compared. The
spectral distribution of the energy should also be comparable, especially at the intermediate to highκ

end of the energy spectrum where turbulence is expected to be isotropic.
The performance of the numerical schemes for decaying turbulence is shown in Figs. 5–13, which

cover Mach numbersM1 values of 0.1, 0.5 and 0.7. These values represent increasing levels of the
gradients of the flow variables. The flow fields computed by the ENO and compact differencing schemes
are shown in the density contour map of Figs. 5 and 6 forM1 = 0.5 and 0.7, respectively. Results are
shown for a relative (to eddy turnover time) simulation time of 1.0. The compact and ENO results for
M1 = 0.5 are indistinguishable whereas those forM1 = 0.7 show less satisfactory results for the compact
schemes, as the representation of the density features are poor because of the presence of shocklets.
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Fig. 5. The contour map of the density field at a simulation time (relative to the eddy turnover time) of 1.0. Results
are provided forM1 = 0.5; grid is 2562. (a)ENOresult. (b)Compact schemeresult.
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Fig. 6. The contour map of the density field at a simulation time (relative to the eddy turnover time) of 1.0. Results
are provided forM1 = 0.7; grid is 642. (a)ENOresult. (b)Compact schemeresults.
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Nevertheless, this is an impressive performance by the compact code, in light of the fact that the features
were not resolved. Of course, grid refinement (2562, not shown) gave compact results that agree better
with the ENO results.

Figs. 7 and 8 compare the performance of ENO, compact, pseudospectral, and a third-order, upwind-
biased Roe scheme for the temporal evolution of the turbulence Mach number,M2

s (t), Ek(t), and of
Eint(t), and the turbulence spectra for the kinetic and internal energy,Pkin(κ), Pint(κ), whereκ is the
wavenumber. The Mach number isM1 = 0.1. The standard ENO scheme is used in Fig. 7 whereas in
Fig. 8, fixed stencil ENO is used. For fixed stencil,r �= r(i), wherer is the left shift in the stencil for
cell i. Excellent agreement between compact and pseudospectral values is apparent. For ENO, because
of the smooth field at this low Mach number, we see that the fixed stencil results agree better with the
pseudospectral and compact results, whereas the adaptive stencil results are highly dissipative forM2

s ,

Ek, andEint. In all cases the low order Roe scheme gave unacceptably high dissipation.
With the exception of the low order Roe scheme, the agreement between the spectrum ofPkin(κ) and

Pint(κ) is quite good at lowκ values although the pseudospectral results forκ = 2 appear too high.
In Fig. 7(c), the compact results have the correct energy dissipation at the largeκ values. However,
the energy for the ENO calculation does not decay beyond a certainκ value. This is attributable to
fictitious turbulence energy generated by the adaptive stencil in ENO, as the fixed stencil results show a
better dissipation phenomenon at largeκ . It is interesting that this observation, which was first made by
Rogerson and Meiburg [16] for an analytical (sine) function also applies to the Navier–Stokes equations
for turbulence simulation. Perhaps more interesting is the fact the cure for the sine function [17] is also
prescribable for the turbulence simulation case, in the manner just discussed. Note that the use of fixed
stencil, while successful forM1 = 0.1, is totally unacceptable forM1 = 0.5 andM1 = 0.7 because of
the relatively large gradients. Specifically, the application of a fixed stencil for these Mach numbers,
while giving very good results forM2

s (t), Ek(t), andEint(t), totally destroyed the turbulence energy
transfer process at largeκ by generating unphysicalPkin(κ) andPint(κ) values (not shown). For these
higher Mach number cases, the adaptive ENO version gave spectra that compare more favorably with
the compact and pseudospectral results. Even then, the spectra computed by the ENO method does not
decay beyond a value ofκ , as mentioned above (Fig. 9). Note in Fig. 9 that the WENO scheme does not
have the difficulty of ENO in terms of energy decay at high wavenumbers. However, the WENO results
are more dissipative, compared to ENO, compact, and pseudospectral.

In order to improve the energy decay characteristics of the ENO method at high wavenumbers,
we added the VG filters to the standard ENO scheme, as discussed earlier in this paper. The results
are shown in Fig. 10. The filter seems to have removed the effect of the adaptive grid in relation to
the numerical turbulence at largeκ. A more acceptable spectra decay behavior can now be observed.
However, the filtered ENO results are less dissipative than the compact scheme, making the modified
scheme potentially more useful for DNS or LES. It is important to note that both the ENO and compact
scheme results shown in Fig. 10 useαf = 0.4.

For the compact scheme, the fidelity with which the spectra energy is dissipated at largeκ can be
adjusted withαf (Fig. 11), with larger values resulting in decreasing dissipation. Note thatαf is bounded
by |αf | < 0.5. In general, increasing filter order leads to a reduction in the amount of dissipation and
hence the energy decay rate. A value of 0.499 in Fig. 11 gave results closer to those for the filtered ENO
scheme usingαf = 0.4 (not shown), suggesting that at highκ, filter is critical.

For the compact scheme, the effect of the order of differencing was investigated (Fig. 12) to better
guide scheme selection for larger simulations where computational costs are large and the most efficient
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Fig. 7. Temporal variation of (a) the square of Mach number, and (b) the total kinetic and internal energy. (c) The
spectral distribution of kinetic energy(Pkin) and internal energy(Pint). Thex-axis in (a) and (b) is the simulation
time relative to the eddy turnover time of turbulence. In (c) thex-axis is the wave number. The results are for Mach
numberM1 = 0.1. In (a) and (b), filled square and triangular symbols are for thepseudospectralresults, the dots
are theRoeresults, the dash lines arecompact schemeresults, whereas the solid lines are theENO results. Note
that the ENO results were obtained with an adaptive stencil. The results in (c) were taken at a relative simulation
time of 20.
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Fig. 8. Temporal variation of (a) the square of Mach number, and (b) the total kinetic and internal energy. (c) The
spectral distribution of kinetic energy(Pkin) and internal energy(Pint). Thex-axis in (a) and (b) is the simulation
time relative to the eddy turnover time of turbulence. In (c) thex-axis is the wave number. The results are for Mach
numberM1 = 0.1. In (a) and (b), filled square and triangular symbols are for thepseudospectralresults, the dots
are theRoeresults, the dash lines arecompact schemeresults, whereas the solid lines are theENO results. Note
that the ENO results were obtained with a fixed stencil. The results in (c) were taken at a relative simulation time
of 20.
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Fig. 9. Comparative behavior of ENO, WENO, Compact, and pseudospectral schemes. Figure shows spectral
distribution of kinetic energy of turbulence,Pkin (a), and internal energyPint (b). Thex-axis is the wavenumber.
The results are for Mach numberM1 = 0.5 and the grid is 642. In these figures, filled square symbols (also referred
to as GM in the figures) are for thepseudospectralresults, the broken lines are filtered compact results (O5, F8,
α = 0.4), solid lines are WENO (unfiltered) and the dash lines are the ENO results. Note that the data were taken
at a relative simulation time of 20.
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Fig. 10. Spectral distribution of kinetic energy of turbulence,Pkin (a), and internal energyPint (b). Thex-axis is the
wavenumber. The results are for Mach numberM1 = 0.5. In these figures, filled squares and triangular symbols
are for thepseudospectralresults, the dotted lines are filtered compact results (O5, F8,α = 0.4), solid lines are
unfiltered ENO results, while the dashed lines are the filtered ENO results (F8,α = 0.4). Note that the data were
taken at a relative simulation time of 20.
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Fig. 11. Effect of filter coefficients(α) on the spectral turbulence energy distribution computed with the compact
scheme. The results were taken at a simulation time (relative to the eddy turnover time) of 20.0 and forM1 = 0.5.
(a) The kinetic energy results. (b) The internal energy results.
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Table 3
Relative CPU time consumption for direct simulation with 642 grid points on
DEC Alpha/2000

Number of time steps 10 102 2×102 103 1.5×103

ENO 1.633 1.572 1.653 1.600 1.588

Compact: with filter 1.0 1.0 1.0 1.0 1.0

schemes are required. The filter order was also varied. In the figure, O5 is an optimized fourth order
scheme [6]. It is apparent that the order of compact differencing does not have any significant effect
within the range studied, whereas the effect of filter order can be observed, consistent with the results in
Fig. 11.

Grid convergence studies were undertaken to assess the quality of the results obtained with the 642

grid. Note that this grid was judged, using standard turbulence arguments, to be sufficient refinement
necessary to resolve all scales of turbulence at the Reynolds number of 250 [7]. However, the results in
Fig. 13 indicate that numerical convergence requirement is more restrictive than the turbulence resolution
requirement, particularly for the compact scheme withαf = 0.4, the value used in Fig. 13. From previous
discussions, largerαf values produce more accurate results for the 642 calculations, bringing the results
closer to that for 2562. The agreement between the ENO results for 642 and 2562 is quite good at
intermediate wavenumbers, 5� κ � 14; the corresponding range for compact differencing is 5� κ � 10
at the value ofαf used for the computations in Fig. 13. Again, largerαf values would extend thisκ
range. The main improvement of using 2562 for ENO is in the removal of the numerical turbulence,
thereby allowing the turbulence energy to decay continuously withκ without the use of the VG filters.
Using the 2562 results as the reference for comparison, it can be seen in Fig. 13 that the unfiltered ENO
results (642) actually produce more accurate results than the filtered counterpart in 5� κ � 14, except
that the former does not possess enough dissipation to remove the numerical turbulence at the tail end of
the spectrum. The agreement between the compact and ENO results is much better at 2562, although it
should be recognized that the filter parameter can be adjusted in the compact differencing code, to serve
as a means to substantially reduce the differences between the ENO and compact results.

Finally, the computational cost with the ENO and compact schemes is compared in Table 3, using
the unoptimized versions of the two codes. It is pointed out that the values of the relative CPU times
reported in this table are similar to those observed (not shown) for the simple functions discussed earlier
in this paper. Therefore, for the various cases investigated, it is safe to say that the filtered compact code
is approximately 1.5 times faster than the unfiltered ENO code.

7. Concluding remarks

High order schemes are required in numerical calculations intended for the direct and large eddy
simulation of turbulence, where the physics must be accurately represented. The spectral method,
which has traditionally been used for such calculations is not suitable when the Mach number becomes
large. The reason is the nonlinear instability of the method, arising from the use of domain-global
basis functions. Two promising candidates are compact and essentially nonoscillatory (ENO) schemes.
Previous studies of these methods have not compared their relative ability to capture the spectral
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Fig. 12. Spectral distribution of kinetic energy,Pkin (a), and internal energyPint (b). Thex-axis is the wave number.
The results are for Mach numberM1 = 0.5. In these figures, filled square and triangular symbols are for the
pseudospectralresults, the dots, dash, solid lines, etc., arecompact schemeresults where C4, F8 is 4th-order
compact with 8th-order filter; O5, F8 is optimized 5th-order compact scheme with 8th-order filter; O5, F10 is
optimized 5th-order compact with 10th-order filter, C6, F10 is 6th-order compact with 10th-order filter. Note that
the data were taken at a relative simulation time of 20.
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Fig. 13. The effect of grid refinement on the spectral distribution of kinetic energy of turbulence,Pkin (a), and
internal energyPint (b). The coarse grid is 642, the fine grid is 2562. Thex-axis is the wavenumber. The results are
for Mach numberM1 = 0.5. The compact results (O5, F8) usedα = 0.499, The filtered ENO results usedα = 0.4.
Note that the fine grid compact and ENO results coincide at low wavenumbers. The data were taken at a relative
simulation time of 4.0. No pseudospectral results are shown in this figure.
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distribution of turbulence energy, which is a quantity of tremendous importance in theoretical turbulence
and subgrid scale modeling in Large Eddy Simulation (LES).

The present study is significant in many respects. First, it focuses on the high wavenumber end of the
turbulence spectrum and computes the relative performance of ENO, WENO, and compact differencing
in that region. Second, to our knowledge, this study is the first to modify the standard ENO method to
accept very high order filters (8th- and 10th-order accurate) and carry out numerical experimentation
on them. A third significance of this work is the study of the spectral performance of WENO in a
viscous Navier–Stokes application. Previous work on this relatively new scheme has focused mostly
on the inviscid limit of the flow equations. Furthermore, even for the compact differencing case, which
has been in use for almost a decade, the present study documents the effects of different filter orders on
the fidelity of the method in representing the high wavenumber modes of turbulence. It has been observed
in this work that the standard ENO scheme does not represent the tail end of the turbulence spectrum very
well because of numerically-induced turbulence. However, the application of filters and, of course, grid
refinement removes this difficulty. Finally, at low Mach numbers, the current compact differencing and
filter scheme formulation gives better results but as the Mach number increases the relative suitability of
the ENO method increases.
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