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Second order nonlinear spatial stability analysis
of compressible mixing layers

F. Ladeinde and J. Wu
Department of Mechanical Engineering, SUNY at Stony Brook, Stony Brook, New York 11794-2300

~Received 3 December 2001; accepted 17 May 2002; published 2 August 2002!

Second order nonlinear spatial stability to three-dimensional perturbation waves is analyzed for
compressible mixing layers by expanding the perturbations into amplitude-dependent harmonic
waves and truncating the Landau equation to the second term. This leads to a system of nonlinear
ordinary differential equations for the harmonics. The two constants in Landau equation are
calculated, wherein the independent variable, timet, is replaced by the streamwise coordinate
direction x. The basic procedure in this paper is similar to that by Liu for compressible laminar
wakes@Phys. Fluids12, 1763~1969!#. However, unlike this reference, which does not provide any
results for their analysis, the present paper obtained many interesting results. The linear results from
the present work compare very favorably with those reported by Day, Reynolds, and Mansour
@Phys. Fluids10, 993~1998!#, who employed a different procedure and limited their analysis to the
linear regime. In the present studies, both the linear and nonlinear problems were analyzed in
exactly the same manner, with the implication that the nonlinear results are probably accurate. These
results include the convergence of the amplitude to an equilibrium value that depends on the two
constants in the amplitude equation from Landau’s procedure. The present analysis is restricted to
exponentially decaying linear solutions at the boundaries and hence to region one in the phase
speed-Mach number diagram. However, we have observed that nonlinear effects could introduce
constant, decaying, or outgoing wave solutions at the boundaries, depending on the velocity and
density ratios and the Mach number of the fast stream. Other effects of these parameters are
reported. ©2002 American Institute of Physics.@DOI: 10.1063/1.1492284#
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I. INTRODUCTION

Mixing layers are often used to model some natural p
nomena and engineering devices such as combustors an
lasers. Figure 1 is a schematic of the flow structure in mix
layers, which are formed by the merging of two streams t
are initially separated by a thin splitter plate. The strea
could have different velocities, densities, and temperatu
Due to the high shear between the streams, intense mi
occurs in the velocity-gradient region, which is of great im
portance in industrial applications. For example, the comb
tion mixing layer model of the scramjet propulsion conce
requires rapid mixing between fuel and air in order to mi
mize the size of the combustor. A detailed understanding
the stability characteristics is needed to properly anal
mixing enhancement. Besides, the stability results could
be used to generate initial conditions for numerical simu
tions.

The linear stability analysis of both the temporal a
spatial waves has received some attention~Michalke1–3!
while the characteristics of large coherent structures h
been investigated by Brown and Roshko4 in their experimen-
tal study of mixing layers. They discussed the central ins
bility mode for two-dimensional incompressible, nonreacti
flows. Lesson, Fox, and Zien5 analyzed the inviscid tempora
stability of compressible mixing layers that were subjected
two-dimensional and three-dimensional disturbances.
2961070-6631/2002/14(9)/2968/19/$19.00
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spatial case was investigated by Goldstein and Leib,6 Grosch
and Jackson,7 and Jackson and Grosch.8 In addition to the
central mode, they also reported on the two outer modes.
outer modes were further investigated by Day, Reynolds,
Mansour,9 hereafter referred to as DRM, in studies that we
extended to the reacting case. The combined effects of c
pressibility, heat release, density ratio, equivalence ratio,
velocity ratio on the instability characteristics of each mo
were also discussed. Planche´ and Reynolds10 observed that
heating favored the outer instability modes in linear, sm
amplitude disturbance theory. Ragab and Wu11 examined the
viscous and inviscid stability of a compressible mixing lay
using both the hyperbolic tangent profile and Sutherland
cosity profiles. They found that the disturbances could
calculated very accurately from the inviscid theory if th
Reynolds number, Re, is greater than 1000.~The inviscid
results yield the upper bound for the growth rate since v
cosity damps out the perturbations.! In addition, Ragab and
Wu reported that nonparallel effects were negligible. T
studies by Schade12 also showed that viscosity did not have
destabilizing effect in an unbounded flow. The effects
compressibility on instability has been studied,9,13,16 subse-
quent to the work of Papamoschou and Roshko,14 which sug-
gested the use of ‘‘convective Mach number’’ to study co
pressibility effects on mixing layers. The general result
that compressibility enhances stability at low to moder
8 © 2002 American Institute of Physics
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Mach numbers, while three-dimensional characteris
evolve at higher Mach numbers.

A procedure that is often used to study stability, for e
ample in Ladeinde and Torrance,15 consists of an exact
closed-form analysis for the linear problem followed by
purely numerical calculation of the nonlinear or finite amp
tude components. Although this procedure allows the co
putation of very strong flows, complete details of the dep
ture from linearity, which are often of interest, cannot
obtained from such methods. In the present work, both
linear and nonlinear problems are analyzed using the La
au’s procedure which, although being limited to weak no
linearities, provides invaluable results on the evolution of
perturbation into the nonlinear regime. Compared to the
ear case, an additional model is needed to close the nonli
system in the form of the Landau equation. The applicat
of this equation for the analysis of other problems has b
reported. Stuart17 derived the equation from the energy equ
tion in rotational Couette flow while Palm18 investigated Be´-
nard convection. The plane parallel flow problem was a
lyzed by Stuart19 and Watson,20 which led to subsequen
applications to the circular Couette flow and plane Poiseu
flows. Eagles21 studied the stability of Taylor vortices b
fifth-order amplitude expansions and proposed a method
the determination of the Landau constant. Finally, Liu22 ana-
lyzed the weakly nonlinear instability of compressible lam
nar wake, using an approach that is similar to the one in
present paper. However, his study was inconclusive since
results were presented.

It should be noted that for strong departure from t
linear regime, such as critical-layer type instability,6,23–25the
method of matched asymptotic expansion may be more
propriate. In this case, the perturbed shear layer is divi
into two overlapped domains, with the same governing eq
tions in each domain but different transverse length sca
This is not the focus of the present work. From weak
moderate level of nonlinearity, this paper presents the eff
of convective Mach number, velocity and density ratios a
extends the nonreacting results in DRM from the linear
the nonlinear regime.

Section II of the paper presents the governing equatio
followed by the Landau’s approach in Sec. III. The deco
position of the flow variables, the governing equations
the linear and nonlinear components, and the solution

FIG. 1. Schematic of the flow structures.
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these equations are also described in Sec. III. Results
presented in Sec. IV.

II. GOVERNING EQUATIONS

A schematic of the mixing layers is shown in Fig.
wherex, y, andz are defined as the streamwise, normal a
spanwise coordinate directions. The dependent variablesr, u,
v, w, T, andp are the density, velocities in thex, y, z direc-
tions, temperature, and pressure, respectively. In the foll
ing, the quantities with subscript 1 refer to the fast strea
while those with subscript 2 are for the slow stream.

The models are governed by the nondimensional co
nuity, Euler, and energy equations:

]r

]t
1

]~rui !

]xi
50, ~1!

r
]ui

]t
1ruj

]ui

]xj
52

]p

]xi
, ~2!

r
]T

]t
1rui

]T

]xi
52gM1

2~g21!p
]ui

]xi
. ~3!

The equation of state can be written as

p5
1

gM1
2 •rT, ~4!

whereM1 is the Mach number of the fast stream.
Nondimensional quantities are introduced as follows:

ui5
ui*

U1*
, r5

r*

r1*
, T5

T*

T1*
,

~5!

p5
p*

r1* U1*
2 , xi5

xi*

dw0*
, t5

t*

dw0* /U1*
,

where the superscript ‘‘* ’’ denotes dimensional quantitie
and

dw0* 5
U1* 2U2*

Udū*

dy* U
max

~6!

is the vorticity thickness of the initial velocity profile. In thi
paper r and s are used to denote the velocity and dens
ratios: r 5U2 /U1 , s5r2 /r1 .

III. STABILITY ANALYSIS

Landau equation serves as the model for amplitude
velopment, either in time or space, depending on the na
of the flow. It will be assumed that the base flow is loca
parallel, with negligible velocities in they andz coordinate
directions, and that the pressure is spatially uniform. T
disturbances are of the parallel type and inviscid, with a
plitudes that are small compared to the base flow. The b
velocity is specified either as hyperbolic tangent:
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ū~y!5
11U2

2
1

12U2

2
tanh~2y!, ~7!

or as the self-similar solution of the compressible bound
layer equation. In either case, the temperature is obta
from the Crocco–Busemann relation:

T̄5M1
2 ~g21!

2
~ ū~11U2!2ū22U2!

1
T2~12ū!

12U2
1

~ ū2U2!

12U2
. ~8!

The uniform pressure value is 1/gM1
2, U2 , and T2 are the

nondimensional velocity and temperature of the slow stre
andg is the ratio of the specific heats. Density is obtained
1/T.

A. Nonlinear stability equations

To obtain the nonlinear stability equations, the dime
sionless perturbation waves are expanded in Fourier seri
time. Using density as an example, the expansion takes
form

r~x,y,z,t !5r0~y,A!1 (
n51

`

@rn~y,A!eni~bz2vt !

1 r̃n~y,A!e2ni~bz2vt !# , ~9!

wherer̃n(y,A) is the complex conjugate ofrn(y,A) andA is
the complex amplitude. The following expansion is intr
duced, following Watson20,29 and Stuart:28

rn~y,A!5 (
m50

`

rnm~y!AnuAu2m. ~10!
b
nt
y
ed

m
s

-
in

he

The series for amplitudeA uses the Landau equation fo
closure which, for the present spatial problem, can be writ
as

dA

dx
5A~ ia1a1uAu21O~ uAu4!!. ~11!

This equation also leads to the following:

dÃ

dx
5Ã~2 i ã1ã1uAu21O~ uAu4!!, ~12!

duAu2

dx
5Ã

dA

dx
1A

dÃ

dx

5uAu2~22a I12a1RuAu21O~ uAu4!!, ~13!

where A, a, and a1 are complex quantities. Note that th
linear problem retains only the first term on the right-ha
side of this equation. Equation~9! can easily be written as

r5r00~y!1r01~y!uA~x!u21r10~y!A~x!ei ~bz2vt !

1 r̃10~y!Ã~x!e2 i ~bz2vt !1r11~y!uA~x!u2

3A~x!ei ~bz2vt !1 r̃11~y!uA~x!u2Ã~x!e2 i ~bz2vt !

1r20~y!A~x!2e2i ~bz2vt !1 r̃20~y!Ã~x!2e22i ~bz2vt !

1¯ , ~14!

where ‘‘;’’ denotes complex conjugate.
The other dependent variables can be expanded

similar fashion, leading to the following vector represen
tion for the various dependent variables:
V5~r,u,v,w,T,p!T5~r00,u00,v00,w00,T00,p00!
T1~r01,u01,v01,w01,T01,p01!

TuA~x!u2

1~r10,u10,v10,w10,T10,p10!
TA~x!ei ~bz2vt !1~ r̃10,ũ10,ṽ10,w̃10,T̃10,p̃10!

TÃ~x!e2 i ~bz2vt !

1~r20,u20,v20,w20,T20,p20!
TA~x!2e2i ~bz2vt !1~ r̃20,ũ20,ṽ20,w̃20,T̃20,p̃20!

TÃ~x!2e22i ~bz2vt !

1~r11,u11,v11,w11,T11,p11!
TA~x!uA~x!u2ei ~bz2vt !1~ r̃11,ũ11,ṽ11,w̃11,T̃11,p̃11!

TÃ~x!uA~x!u2e2 i ~bz2vt !. ~15!
ting
s

We also define

Vnm5~rnm ,unm ,vnm ,wnm ,Tnm ,pnm!T, ~16!

where, for example,

rnm5r00,r01,r10,... . ~17!

The governing equations for the perturbations can
obtained by inserting the Fourier expansions into the co
e
i-

nuity, momentum, energy, and state equations and collec
the like terms. Using Eq.~15! and retaining the coefficient
of A(x)ei (bz2vt), the linear problem can be written as

M10V1050, ~18!

where
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M1051
i ~au002v! iar00

dr00

dy
1r00D ibr00 0 0

0 i ~au002v!r00 r00

du00

dy
0 0 ia

0 0 i ~au002v!r00 0 0 D

0 0 0 i ~au002v!r00 0 ib

0 ~g21!ia r00

dT00

dy
1~g21!D ~g21!ib i ~au002v!r00 0

1

gM1
2 T00 0 0 0

1

gM1
2 r00 21

2 ~19!

andD[d/dy.
The equations in~18! constitute an eigenvalue problem, witha as the eigenvalue. In a given base flow configuration w

a fixed Mach number, velocity ratio, and density ratio, disturbance waves of various frequencyv and oblique angleu
[tan21 b/ar are possible. However, only one of these will have the largest growth rate2a I max. In order to find2a I max, it
is necessary to search across the whole~v, u! plane. DRM found that the most unstable wave has a frequency less than
an oblique angleu'56°. We have therefore restricted our search to be within 0.0<v<2.0 and 0°<u<85°.

Equating the terms containinguA(x)u2 yields the governing equations for the nonlinear partf01,

M01V015f01, ~20!

where

M0151
22a Iu00 22a Ir00

dr00

dy
1r00D 0 0 0

0 22a Ir00u00 r00

du00

dy
0 0 22a I

0 0 22a Ir00u00 0 0 2D

0 0 0 22a Ir00u00 0 0

0 2~g21!2a I r00

dT00

dy
1~g21!D 0 22a Ir00u00 0

1

gM1
2 T00 0 0 0

1

gM1
2 r00 21

2 . ~21!

The source vectorf01 is defined in the Appendix. Note thatv andb do not appear in these equations. The terms contai
A(x)2e2i (bz2vt) give the governing equations for the nonlinear partf20,

M20V205f20, ~22!

where

M2051
2i ~au002v! 2iar00

dr00

dy
1r00D 2ibr00 0 0

0 2i ~au002v!r00 r00

du00

dy
0 0 2ia

0 0 2i ~au002v!r00 0 0 D

0 0 0 2i ~au002v!r00 0 2ib

0 ~g21!2ia r00

dT00

dy
1~g21!D 2~g21!ib 2i ~au002v!r00 0

1

gM1
2 T00 0 0 0

1

gM1
2 r00 21

2 . ~23!

The source vectorf20 is defined in the Appendix.
The coefficients ofuA(x)u2 A(x)ei (bz2vt) lead to the governing equations for nonlinear partf11,

M11V115a1f101f11, ~24!
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wherea1 is the Landau constant,a35(a r ,3a I), and

M1151
i ~a3u002v! ia3r00

dr00

dy
1r00D ibr00 0 0

0 i ~a3u002v!r00 r00

du00

dy
0 0 ia3

0 0 i ~a3u002v!r00 0 0 D

0 0 0 i ~a3u002v!r00 0 ib

0 ~g21!ia3 r00

dT00

dy
1~g21!D ~g21!ib i ~a3u002v!r00 0

1

gM1
2 T00 0 0 0

1

gM1
2 r00 21

2 , ~25!
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B. Solution of the perturbation equations

1. The linear part

The linear part@Eq. ~18!# can be solved with the proce
dure developed by Gropengiesser.30 Defining

x5
iap10

v10
, ~26!

the equations can be reduced to a single nonlinear, first o
differential equation,

x85r00a
2S u002

v

a D2

xS xg1
du00

dy D
u002

v

a

, ~27!

where

g5T00S 11
b2

a2D2M1
2S u002

v

a D 2

. ~28!

For boundary conditions,du00/dy approaches zero a
y→6`. The quantitiesu00, T00, r00, andg10 are constant.
Letting du00/dy50 andx850 gives

x~y56`!57

aS u002
v

a D
AgT00

. ~29!

An eigenvalue problem results from Eq.~27! with eigen-
value a. With the boundary conditions in the two fre
streams, Eq.~27! is integrated fromy→6` to y50 using
the fourth order Runge–Kutta scheme. The two values ofx1

andx2 obtained from this procedure are compared and i
ated ona until they become essentially equal aty50.

2. The nonlinear part f01

Two coupled ordinary differential equations~ODEs! are
obtained from Eq.~20!:

dp01

dy
52a Ir00u00v011 f 01p , ~30!
er

r-

u00

dv01

dy
5

du00

dy
v0112a I~M1

2u00
2 2T00!p011 f 01v , ~31!

with

f 01p5 f 013, ~32!

f 01v5
u00

g
~T00f 0111 f 015!12a IM1

2u00
2 f 0162T00f 012.

~33!

Equations~30!–~33! are valid for all values ofy. The
boundary conditions are obtained by considering the beh
ior as y→6`. The ODEs are solved numerically. In the
limits, no shear exists, and all functions constructed from
base flow are independent ofy. From the linear solution, the
variables inf10 have exponential tails at~both! free streams,
i.e., they are of the formCe6q10y, whereC is a constant, so
that the inhomogeneous terms have the formC8e62q10Ry,
whereC8 is another constant andq10R is the real part ofq10.
Note that the restriction to exponentially decayingf10 values
at the free streams implies that the present analysis is
stricted to subsonic disturbances, and hence to region on
the phase speed-Mach number diagram.8 However, the non-
linear problem could introduce constant, decaying, or o
going wave solutions at the boundaries depending onM1

2

~fast stream! or M1
2sr2 ~slow stream!. This is a new result,

which will be discussed in more detail later in this paper.
In the limit y→1`, Eqs.~30! and~31! can be written as

dp01

dy
52a Iv011B1pe22q10Ry, ~34!

dv01

dy
52a I~M1

221!p011B2pe2q10Ry, ~35!

which, upon differentiating, gives

d2p01

dy2 54a I
2~M1

221!p01

12~a IB2p2q10RB1p!e22q10Ry, ~36!
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d2v01

dy2 54a I
2~M1

221!v01

12@a I~M1
221!B1p2q10RB2p#e22q10Ry. ~37!

The general solutions of~36! and ~37! depend onM1
2 as

follows.
WhenM1

2.1 and we defineq01[2ua I uAM1
221, the so-

lutions of ~36! and ~37! are

p015c1e2q01y1
2a IB2p22q10RB1p

4q10R
2 2q01

2 e22q10Ry, ~38!

v015c3e2q01y1
2a I~M1

221!B1p22q10RB2p

4q10R
2 2q01

2 e22q10Ry.

~39!

The original Eq.~34! requires that

c1

c3
52

sign~a I !

AM1
221

. ~40!

The solution for the sonic limitM1
251 can be obtained as

p015
a IB2p2q10RB1p

2q10R
2 e22q10Ry1c1 , ~41!

v0152
B2p

2q10R
2 e22q10Ry. ~42!

When M1
2,1 and we defineq01[2ua I uA12M1

2, the solu-
tions of ~36! and ~37! are

p015c1 cos~q01y1fp!1
2a IB2p22q10RB1p

4q10R
2 1q01

2 e22q10Ry,

~43!

v015c3 cos~q01y1fv!

1
2a I~M1

221!B1p22q10RB2p

~4q10R
2 1q01

2 !
e22q10Ry. ~44!

In this case, Eq.~34! requires that

fv5fp1
p

2
, ~45!

c1

c3
5

sign~a I !

A12M1
2

. ~46!

The solutions in the asymptotic limity→2` can also
be obtained in a similar fashion if we note that Eq.~30! and
~31! become

dp01

dy
52a I rsv011B1ne2q10Ry, ~47!

r
dv01

dy
52a I~M1

2r 221/s!p011B2neq10Ry, ~48!

which can be differentiated to give
d2p01

dy2 54a I
2~M1

2sr221!p01

12~a IsB2n1q10RB1n!e2q10Ry, ~49!

d2v01

dy2 54a I
2~M1

2sr221!v01

1
2

r
@a I~M1

2r 221/s!B1n1q10RB2n#e2q10Ry.

~50!

When M1
2sr2.1 andq01[2ua I uAM1

2sr221, the solu-
tions are

p015c2eq01y1
2a IsB2n12q10RB1n

2q10R
2 2q01

2 e2q10Ry, ~51!

v015c4eq01y1
2a I~M1

2r 221/s!B1n12q10RB2n

r ~2q10R
2 2q01

2 !
e2q10Ry,

~52!

where

c2

c4
5

sign~a I !rs

AM1
2sr221

. ~53!

The solutions forM1
2sr251 are

p015
a IsB2n1q10RB1n

2q10R
2 e2q10Ry1c2 , ~54!

v015
B2n

2rq10R
2 e2q10Ry. ~55!

For M1
2sr2,1 andq01[2ua I uA12M1

2sr2:

p015c2 cos~q01y1fp!

1
2a IsB2n12q10RB1n

4q10R
2 1q01

2 e2q10Ry, ~56!

v015c4 cos~q01y1fv!

1
2a I~M1

2r 221/s!B1n12q10RB2n

r ~4q10R
2 1q01

2 !
e2q10Ry, ~57!

where

fv5fp1
p

2
, ~58!

c2

c4
5

sign~a I !rs

A12M1
2sr2

. ~59!

3. The nonlinear part f20

The nonlinear part@Eq. ~22!# can be written as a set o
coupled equations

dv20

dy
5

du00

dy

u002
v

a

v201
2iag

u002
v

a

p201 f 20v , ~60!
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dp20

dy
52r002iaS u002

v

a D v201 f 20p , ~61!

where

f 20p5 f 203, ~62!

f 20v5
T00f 2011 f 205

g

22i ~au002v!M1
2f 2062

a f 2021b f 204

r00~au002v!
. ~63!

The boundary conditions for these equations can be
tained from the linear part, from which we know that th
variables have exponential tails at~both! free streams and
can be represented in the formCe6q10y, whereC is a con-
stant. Each of the inhomogeneous terms appearing in t
governing equations is the sum of products, such asf10c10

and so behaves asC8e62q10y, whereC8 is a constant. There
fore, asy→6` anddu00/dy50, the equations simplify to

dv20

dy
5

2iag

u002
v

a0

p201B1e62q10y, ~64!

dp20

dy
52r002iaS u002

v

a D v201B2e62q10y. ~65!

The variables in these equations are constant exceptv20,
p20 and the ‘‘y’’ in e62q10y. The exponential behavior of th
inhomogeneous terms suggests solutions in the form

v20~y!5cv~y!e62q10y, ~66!

p20~y!5cp~y!e62q10y. ~67!

Substituting back into Eqs.~64! and ~65! and requiring
finite values aty→6`, we obtain the following system o
boundary conditions at the upper half of the layer:

2q10c11
2iag

12
v

a

c352
iag

12
v

a

B2p

2q10
2

B1p

2
, ~68!

v205S c12
iagB2p

2q10S 12
v

a D y1
B1p

2
yD e22q10y, ~69!

p205S c31 iaS 12
v

a D B1p

2q10
y1

B2p

2
yDe22q10y, ~70!

where we have used the fact thatu0051 at this boundary.
The analogous equations for the lower half of the la

are

2q10c22
2iag

r 2
v

a

c45
B1n

2
2

iag

r 2
v

a

B2n

2q10
, ~71!
b-

se

r

v20S y→2`,
dr

dy
50D

5S c21
iag

r 2
v

a

B2n

2q10
y1

B1n

2
yD e2q10y, ~72!

p20S y→2`,
dr

dy
50D

5S c42siaS r 2
v

a D B1n

2q10
y1

B2n

2
yDe2q10y. ~73!

Only c1 andc2 are unknown since the following expressio
can be derived:

c352
B2p

4q10
2

12
v

a

4iag
B1p1

12
v

a

ag
iq10c1 , ~74!

c45
B2n

4q10
2

r 2
v

a

2iag

B1n

2
1

r 2
v

a

iag
q10c2 , ~75!

where

B1p5 f 20v~1`!e2qy, ~76!

B2p52ia f 203~1`!e2qy, ~77!

B1n5 f 20v~2`!e22qy, ~78!

B2n52ia f 203~2`!e22qy. ~79!

With the foregoing boundary conditions at the two fr
streams, the coupled differential equations can be integr
from infinity to y50. The two constantsc1 and c2 are
adjusted in an iterative manner until the solutions from
two halves converge aty50: p20(0

1)5p20(0
2), v20(0

1)
5v20(0

2). This was achieved using the globally converge
Newton–Raphson iteration method for nonlinear systems
equations.26

4. The nonlinear part f11

The nonlinear Eq.~24! contains the unknown Landa
constanta1 , which must be obtained in advance before t
equations can be solved. The use of an adjoint problem
cedure is examined for the purpose of evaluating this c
stant. The adjoint matrixM11* of M11 satisfies the condition

E
2`

1`

V11* •~M11V11!dy5E
2`

1`

V11•~M11* V11* !dy, ~80!

whereM11 is defined by Eq.~25! andV11* is the adjoint vector
of V11. V11* satisfiesM11* V11* 50. Therefore,

05E
2`

1`

V11•~M* V11* !dy5E
2`

1`

V11* ~a1f101f11!dy,

~81!

so that

E
2`

1`

V11* •a1f10dy1E
2`

1`

V11* •f11dy50 ~82!
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and

a152
*2`

1`V11* •f11dy

*2`
1`V11* •f10dy

. ~83!

After a little algebra, the adjoint matrix can be written

M11* 51
i ~a3u002v! 0 0 0 0

1

gM1
2 T00

r00ia3 r00i ~a3u002v! 0 0 ~g21!ia3 0

2r00D r00

du00

dy
r00i ~a3u002v! 0 r00

dT00

dy
2~g21!D 0

r00ib 0 0 r00i ~a3u002v! ~g21!ib 0

0 0 0 0 r00i ~a3u002v!
1

gM1
2 r00

0 ia3 2D ib 0 21

2 . ~84!
d

e

-

ve
t the

l

re-
The equationsM11* V11* 50 are then reduced to two couple
first-order differential equations for the pressure (p11* ) andy
velocity component (v11* ), while the other variables can b
expressed in terms of these two variables

dp11*

dy
5M1

2r00~a3u002v!2v11* , ~85!

dv11*

dy
5F a3

21b2

M1
2r00~a3u002v!221Gp11* , ~86!

r11* 5
ip11*

gM1
2r00~a3u002v!

, ~87!

u11* 52
ia3p11*

M1
2r00~a3u002v!2 , ~88!

w11* 52
ibp11*

M1
2r00~a3u002v!2 , ~89!

T11* 5
ip11*

gM1
2~a3u002v!

. ~90!

To obtain the boundary conditions aty→6`, note that the
coefficients ofv11* and p11* are independent ofy in those
limits and that~85! and ~86! can be written as

d2p11*

dy2 5@a3
21b22M1

2r00~a3u002v!2#p11* 5q* 2p11* ,

~91!

d2v11*

dy2 5@a3
21b22M1

2r00~a3u002v!2#v11* 5q* 2v11* ,

~92!

whereq* is defined as

q* 5a3A11
b2

a3
22M1

2r00S u002
v

a3
D 2

. ~93!
As y→1`, Eqs. ~91! and ~92! have the general solu
tions

p11* 5c1e2q* y, ~94!

v11* 5c2e2q* y, ~95!

wherec1 and c2 are constants and the terms with positi
exponents have been discarded to ensure finite values a
free streams. Inserting these solutions into~85! yields

2q* c1e2q* y5M1
2~a32v!2c2e2q* y, ~96!

so that

c1

c2

52
M1

2~a32v!2

a3A11
b2

a3
22M1

2S 12
v

a3
D 2

. ~97!

In the limit y→2`, Eqs.~91! and~92! have the genera
solutions

p11* 5c3eq* y, ~98!

v11* 5c4eq* y, ~99!

with

q* c3eq* y5M1
2 1

T2
~ra32v!2c4eq* y ~100!

and

c3

c4

5

M1
2

1

T2
~ra32v!2

a3A11
b2

a3
22M1

2
1

T2
S r 2

v

a3
D 2

. ~101!

With these results forp11* andv11* , the solutions forr11* ,
u11* , w11* , andT11* can be obtained as discussed above. Mo
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over, the Landau constanta1 is also readily obtained via Eq
~83!. Equations~24! can now be simplified and solved,

dv11

dy
5

du00

dy

u002
v

a3

v111
ia3g11

u002
v

a3

p111 f 11v , ~102!

dp11

dy
52r00i ~a3u002v!v111 f 11p , ~103!

where

g115T00S 11
b2

a3
2D 2M1

2S u002
v

a3
D 2

, ~104!

f 11v5
T00~ f 1111 f 1118 !1~ f 1151 f 1158 !1 i ~a3u002v! f 116

g

2
a3~ f 1121 f 1128 !1b~ f 1141 f 1148 !

r00~a3u002v!
, ~105!

f 11p5 f 1131 f 1138 , ~106!

and

f 1118 52a1~r00u101r10u00!, ~107!

f 1128 52a1r00u00u102a1p10, ~108!

f 1138 52a1r00u00v10, ~109!

f 1148 52a1r00u00w10, ~110!

f 1158 52a1r00u00T102~g21!a1u10. ~111!

Wheny approaches infinity,du00/dy equals zero and the
inhomogeneous terms@the right-hand side of Eq.~24!# are
complicated and give rise to four possibilities:f10•c01,
f̃10•c20, f10•c10•w̃10, a1f10, all of which have exponen
tial tails but with different decay rates. The analytical form
las for the inhomogeneous terms are then not as eas
derive as those for the other nonlinear components prese
in the preceding sections of this paper. A different appro
is used for this case.

As y→6`, Eqs.~102! and ~103! become

dv11

dy
5

g11

u002
v

a3

p111 f 11v , ~112!

dp11

dy
5r00a3

2S u002
v

a3
D v111 f 11p , ~113!

or

d2v11

dy2 5q11
2 v111

g11

u002
v

a3

f 11p1 f 11v8 , ~114!

d2p11

dy2 5q11
2 p111r00a3

2S u002
v

a3
D f 11v1 f 11p8 , ~115!

where
-
to

ted
h

q11
2 5r00a3

2g11 ~116!

and a prime denotes differentiation with respect toy.
The solution to these equations can be separated

homogeneous and particular parts

v115v11h1v11p , ~117!

p115p11h1p11p , ~118!

with

v11h5c1e2q11y1c2eq11y, ~119!

p11h5c3e2q11y1c4eq11y, ~120!

where

c352
q11

g

u002
v

a3

c1 , ~121!

c45
q11

g

u002
v

a3

c2 . ~122!

The particular solutions satisfy

d2v11p

dy2 5
g11

u002
v

a3

p11p1 f 11v , ~123!

dp11p

dy
5r00a3

2S u002
v

a3
D v11p1 f 11p , ~124!

which can be solved as

v11p5
1

2q11
E

y0

y

@eq11~y2t !2eq11~ t2y!# f 11v~ t !dt, ~125!

p11p5
1

2q11
E

y0

y

@eq11~y2t !2eq11~ t2y!# f 11p~ t !dt, ~126!

where, for boundedness, we have chosen the negative e
nential branch at the fast stream and the positive expone
branch at the slow stream.

The calculation sequence for the whole nonline
problem is illustrated in Table I, where Vnm

5(rnm ,unm ,vnm ,wnm ,Tnm ,pnm). The position ~row, col-
umn! of each term gives information on the expansion
which it corresponds. For example,V20 is in the row of
A2e2i (bz2vt) and in the column ofuAu0, so V20 comes from
the coefficients forA2e2i (bz2vt). The termsVnm are calcu-
lated line by line from top to bottom.V00 is the base flow
profile, which must be calculated first. The next term isV10,
linear eigenfunctions, which must be calculated alo
with eigenvaluea5aR1 ia I . V01 and V20 are obtained
subsequently without requiring further information. Befo
V11 can be calculated,a15a1R1 ia1I must be obtained
in advance with the knowledge of the known terms.



ve
,
s

F
re

e

b
e

ve

yi
nc
-

a
a

n

g

e

e
a
b
n-
d

. 2

e
er
h

is
m

,
ry.

n-
with

a
in
ly
he
i-

ur-

le.
lar
ter
e

t
e

r

m

2977Phys. Fluids, Vol. 14, No. 9, September 2002 Second order nonlinear spatial stability analysis
IV. RESULTS

The parameters investigated in this study are the con
tive Mach numberMc , the velocity ratio of the two streams
r, and the density ratio,s. The convective Mach number i
defined asMc5(U1* 2U2* )/(c11c2), wherec1 and c2 are
the nondimensional sound speeds of the two streams.
streams of equalg ~ratio of specific heat at constant pressu
and constant volume! and molecular weight, convectiv
Mach number can be related toM1 as Mc5@M1As(1
2r )/(11As)#.

The spatial development of amplitude is predicted
Landau equation~11!. The present study truncates it to th
second term; the two constantsa anda1 associated with the
retained terms determine the nature of the amplitude de
opment. The two constants in Eq.~13! play significant roles:
2a I is the growth rate. A negative value ofa I implies a
growing disturbance, a positive value represents a deca
disturbance, while zero corresponds to a neutral disturba
The larger the value of2a I , the faster the disturbance de
velops. The convective Mach numberMc , velocity ratio r,
and density ratios have strong effects on2a I max, the rate of
the fastest growing disturbance. The second constant (a1R)
in Landau equation represents the nonlinear effects. The
plitude will converge to an equilibrium value or end in
singularity, depending on whethera1R is negative or posi-
tive. Integrating~13! gives

uA~x!u25
a I uAu0

2

a1RuAu0
21~a I2a1RuAu0

2!e2a I x
, ~127!

where uAu0 is the initial amplitude at the origin (x50). If
a1R.0, the denominator will approach zero at a finite dow
stream distancexs ,

xs52
1

2a I
lnS 12

a I

a1RuAu0
2D . ~128!

That is, the amplitude ends in a singularity, signifyin
the limit of the present procedure. Negativea1R functions as
a damping factor which prevents the amplitude from dev
oping indefinitely. The balance betweena I and a1R deter-
mines the equilibrium amplitudeuAu* . From Eq. ~127!,
uAu* 2→a I /a1R when x→1`. The equilibrium amplitude
uAu* is totally determined by the two constantsa I anda1R in
this case. For the linear theory, when2a I.0, the amplitude
grows exponentially asA5e2a I x, a potentially unbounded
behavior that is terminated by nonlinear effects. The conv
gence to an equilibrium amplitude under the nonline
mechanism is shown in Fig. 2. This figure is obtained
integrating Eq.~13! using the calculated value of the eige
value a and Landau constanta1 ; in the manner discusse

TABLE I. Illustration of the calculation sequence for the nonlinear proble

uAu0 uAu2
¯

A0e0i (bz2vt) V00 V01 ¯

A1ei (bz2vt) V10 V11 ¯

A2e2i (bz2vt) V20 ¯ ¯

¯ ¯ ¯
c-

or

y

l-

ng
e.

m-

-

l-

r-
r
y

earlier in this paper. The parametersa anda1 determine the
final equilibrium value, which isuAu* 5Aa I /a1R and is
shown as the solid line in Fig. 2. The dashed line in Fig
represents the solution of Eq.~13! when the initial amplitude
uAu1 is such thatuAu1@uAu* , whereas the dashed–dotted lin
is for uAu1!uAu* . Obviously, the latter situation takes long
to reach equilibrium (x'60) compared to the case wit
higher initial amplitude (x'20). WhenuAu is large, the sec-
ond term, which is the fourth power of the amplitude,
more significant. Consequently, the drop to the equilibriu
amplitudeuAu* is very rapid. When the initial amplitudeuAu
is small ~and less than unity!, the first term is dominant
leading to results that are similar to those of the linear theo
Further growth inuAu causes increasing importance of no
linear effects. The present studies focus on the case
small initial amplitude.

Figures 3~a!–3~d! illustrate the pressure solution as
function of the downstream distance. The linear results
Fig. 3~a! show essentially zero values up until approximate
x'12.5, beyond which an oscillatory pattern evolves. T
amplitude of the oscillation grows from zero to approx
matelyupu10'0.7E205 atx'60, after which a limit cycle is
maintained. Note that the pointx'60 coincides with the
location where the equilibrium amplitudeuAu* is established
~Fig. 2!. Therefore, the downstream growth ofuAu is directly
correlated with the growth in pressure eigenfunction. S
prisingly, the nonlinear eigenfunctionp01 does not show an
oscillatory pattern but rather a hyperbolic tangent profi
The p11 component of the eigenfunction shows a simi
trend top10, although its development starts at a much la
location (x'35) and its amplitude is an order of magnitud
weaker. Note that both disturbances show a wavelengthl, of
approximately 7.5. The nonlinear eigenfunctionp20 has a
relatively strong amplitude (0.7E203). We also observe
wave number doubling (l'3.75) relative to the componen
p01 or p11. This eigenfunction also exhibits a limit cycl
shortly after the equilibrium amplitude is established.

The distributions alongy of the linear eigenfunctions fo

.

FIG. 2. Convergence to the equilibrium amplitudeuAu* .
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FIG. 3. The perturbation waves:~a! p10 , ~b! p01 , ~c! p20 , ~d! p11 . The parameters areMc50.25, r 50, ands51.
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u, v, r, T, andp are shown in Figs. 4~a!–4~e!. These plots
show the real component (f r), the imaginary componen
(f i), and the magnitude (Af r

21f i
2). Foru10, the imaginary

component is dominant and is roughly symmetric abouy
50. The real component has the greater contribution aro
y521 andy50.5. Forv10, the real component is dominan
and symmetric abouty50. The imaginary component ha
the larger contribution aroundy560.5, with essentially zero
contribution aty50. This component is also antisymmetr
abouty50.

The distribution ofr10 and T10 are strongly but nega
tively correlated for both the real and imaginary componen
leading to magnitudes ofr10 and T10 that have similary
profile @Figs. 4~c! and 4~d!#. Unlike the distributions ofu10

and v10, which have longer tails (25<y<5), the density
and temperature eigenfunctions are mostly restricted touyu
<2. The pressure contributions come essentially from
real component of the eigenfunction, as the imaginary co
ponent is essentially zero for ally. The pressure effects ar
found in uyu<5 @Fig. 4~f!#.

Concerning the validity of the linear results in Fig
4~a!–4~f!, it is important to realize that they were obtaine
~‘‘post-processed’’! from the same analysis that have show
good agreement with the results of DRM, more details
which are provided below.

Figures 5–7 illustrate the effects of compressibility~con-
d

s,

e
-

f

vective Mach number!, velocity ratio,r, and density ratio,s,
on the maximum linear growth rate (2a I max), the nonlinear
growth coefficienta1R , and the equilibrium amplitudeuAu* .
The maximum growth rate results for the linear case
shown in Figs. 5~a!, 6~a!, and 7~a! as a function ofMc , r,
and s, respectively. In these figures, the linear results fro
the present studies are also compared with those of DR
who used a different method of analysis and restricted th
analysis to the linear problem. In general, the agreement
tween their results and the present results is very go
thereby giving some validity to the procedure used in
present work for both the linear and nonlinear problems.

Figure 5~a! shows a parabolic decay in the maximu
growth rate as the convective Mach numberMc increases, in
accordance with the well known results for the linear pro
lem that compressibility has a stabilizing effect on t
growth rate. BeyondMc'0.8, the decay is weaker and a
sumes an approximately linear profile withMc . The nonlin-
ear growth ratea1R shows an opposite behavior to the max
mum ~linear! growth rate @Fig. 5~b!#. That is, it is
characterized by an initial parabolic growth withMc , until
Mc'0.8, after which the growth is significantly reduced a
a1R becomes essentially independent ofMc , with a satura-
tion value ofa1R'2.6. From these results, therefore, we c
observe a negative correlation between the maximum~linear!
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FIG. 4. The linear eigenfunctions:~a! u10 , ~b! v10 , ~c! r10 , ~d! T10 , ~e! p10 . The parameters areMc50.6, r 50, ands51.
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at
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growth rate of the linear component and the nonlinear co
ficient a1R . Note thata1R becomes positive atMc50.5 and
saturates atMc50.8. From the foregoing, it is apparent th
the present study gives a perfect agreement with the re
of DRM for the maximum growth rate forMc up to 2.0.
However, there seems to be some kind of degeneracy aro
Mc50.5. This is evident in Fig. 5~c!, where the equilibrium
amplitude shows a steep increase withMc asMc approaches
0.5. WhenMc.0.5, the distancexs required for the pertur-
bation to end in a singularity is shortened, as per Eq.~128!.
That is, the higher the convective Mach number, the sho
f-

lts

nd

er

the perturbation waves travel. In the asymptotic limitMc

→`, this distance approaches zero. In this limit, a multip
scale analysis, such as in Balsa and Goldstein27 might be
more appropriate than the present Landau procedure.
thermore, note that the unboundedness of the nonlinear
plitude might not be observed in a physical system sin
unlike the inviscid model, viscosity is present and will pr
vide the necessary dissipation to prevent this behavior.

The effect ofr on the maximum growth rate is shown i
Fig. 6~a!, where agreement is evident between the DRM
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FIG. 5. The effects of compressibility on~a! maximum
growth rate (2a I), ~b! a1R , ~c! the equilibrium ampli-
tude uAu* . The parameters arer 50 ands51.
e
e
a

e

sults and the present study. The exponential growth rat
smallerr values is replaced by a fairly linear decay at larg
r values (r'0.24). Unlike the linear results which show
monotonic behavior, the nonlinear parametera1R shows a
nonmonotonic dependence onr, with a local maximum oc-
curring atr'0.24, which coincides with the beginning of th
at
r
slow decay in the maximum growth rate.a1R has an average
value of approximately211 until r'0.73 @Fig. 6~b!#. The
equilibrium amplitude shows a fairly monotonic decay withr
@Fig. 6~c!#, starting off at a gradient of'20.25 for x
<0.12, slowing down to a gradient of20.15 for 0.12<x
<0.73 and leveling off to a constant value thereafter.
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FIG. 6. The effects of velocity ratior[U2 /U1 on ~a!
maximum growth rate (2a I), ~b! a1R , ~c! the equilib-
rium amplitudeuAu* . The parameters areMc52.75 and
s51.
th
f
e

he
The dependence of the maximum growth rate on
density ratios is a perfect straight line, with a gradient o
10.2 @Fig. 7~a!#. This result is obtained in both DRM and th
present studies. The nonlinear coefficienta1R decreases with
s for s,3.6. The decay is generally nonlinear~nonmonoton-
eic!, although it can be approximated between 0<s<3.6 by a
straight line with a gradient of24.2. For s.3.6, a1R in-
creases with a steep gradient of125.0. The equilibrium am-
plitude drops rapidly with density ratio at small values of t
density ratio (s,0.6). Beyond this point, i.e., 0.6<s<4.0,
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FIG. 7. The effects of density ratios[r2 /r1 on ~a!
maximum growth rate (2a I), ~b! a1R , ~c! the equilib-
rium amplitudeuAu* . The parameters areMc50 and
r 50.
en

d
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son.
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the equilibrium amplitude oscillates aboutuAu* '0.34.
Referring to Fig. 4, it can be seen that the linear eig

functions~u10, v10, r10, T10, andp10! decay exponentially
as the two boundariesy56` are approached. As mentione
earlier, this is a condition that limits the linear analysis
-
subsonic disturbances and therefore to region one in
phase speed-Mach number diagram of Grosch and Jack8

The nonlinear eigenfunctions~u01, v01, r01, T01, andp01!
show a different behavior at the boundaries. For the f
stream, the nature of the boundary solutions depend on
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FIG. 8. The dependence of the boundary solutions onM 1 ~fast stream! andM 1
2sr2 ~slow stream!. The conditions at the boundaries are~a! v01 , M151.25,

M1
2sr251.25; ~b! v01 , M 151.25,M 1

2sr251.0; ~c! v01 , M 151.0, M 1
2sr250.6; ~d! p01 , M 150.6, M 1

2sr250.6.
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sign of M1
221. For M1

2.1, the disturbances decay; forM1
2

51, the disturbances approach a constant value, wherea
M1

2,1, they oscillate iny. SinceM1,1 for the latter case
the net velocity away from the boundary,6u1c, is positive,
whereu is the fluid velocity normal to the boundary. Ther
fore, the oscillations represent outgoing waves. Figures~a!
and 8~b! show a decaying disturbance at1` where M1

51.25.1. On the other hand, Fig. 8~c! shows a fairly con-
stant behavior (M151). A wave solution at this boundary i
evident in Fig. 8~d!, whereM150.6. According to the theory
in Sec. III B 2, the wavelengthl1` of the oscillations is
l1`5p/ua I uA12M1

2, which approaches infinity asM1

→1, consistent with theM151 limit of a constant signal a
the boundary.

For the slow stream, the occurrence of decaying, c
stant, and outgoing wave solutions depend on the sign of
discriminantM1

2sr221, which has to be greater, equal,
less than zero for the respective types of boundary soluti
This behavior can be observed in Figs. 8~a!–8~d!. In this
case, the wavelength of the oscillations isl2`

5p/ua I uA12M1
2sr2. Note that, unlike the boundary solu

tions at the fast stream, which depend only on the value
M1 , the conditionr 50 always leads to solutions which o
cillate aty→2` for any M1 .
for

-
he

s.

of

To advance an explanation for the apparently stra
behavior described above, it should be noted that subs
flows are in general more prone to oscillations~Ghosh and
Matthaeus31 and Ladeindeet al.32!, compared to incompress
ible or sonic/supersonic flows. These oscillations are non
ear, Euler effects, which explains their suppression in
linear problem. As the effective Mach number increases
ward the sonic and supersonic limits, the manifestation of
nonlinear solutions is usually in terms of exponential dec
~growth! or constants, as wave steepening becomes im
tant. A discontinuity in the solutions, caused by shock wav
is therefore a possibility, even though we have not explic
identified this in the present work. Furthermore, it is n
inconceivable that the unboundedness alluded to earlie
this paper for increasing Mach number is a manifestation
incipient discontinuity brought about by wave steepenin
None of the existing nonlinear stability methods,6,23–25 in-
cluding the present one can analyze the discontinuous
nomena. In this case, the method of characteristics m
perform better, although we cannot be definitive about t
issue. Finally, note that in the foregoing, the quant
AM1

2sr2 is the effective Mach number of the slow stream
leading to an effective sonic limit ofAM1

2sr251.
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V. CONCLUDING REMARKS

The weakly nonlinear behavior of compressible mixi
layers is investigated analytically in this paper, using
Landau’s procedure. The nonlinear stability to thre
dimensional perturbation waves is analyzed by expand
the perturbations into amplitude-dependent harmonic wa
and truncating the Landau equation to the second term.
basic procedure in this paper is similar to that in Liu22 for
compressible laminar wakes. However, Liu did not pres
any results for his analysis. The present paper has man
teresting results, including the effects of velocity ratio, de
sity ratio, and convective Mach number on the linear grow
rate, the nonlinear contribution to perturbation growth, a
the magnitude and distribution of the equilibrium amplitud
uAu* . The linear results from the present analysis comp
very well with those reported by Day, Reynolds, a
Mansour,9 who employed a different procedure and limite
their analysis to the linear regime. We have observed in
present studies that, although the linear analysis is restri
to exponentially decaying linear solutions at the boundar
nonlinear effects could introduce constant, decaying, or o
going wave solutions at the boundaries, depending on
velocity and density ratios and the Mach number of the f
stream.
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APPENDIX: SOURCE TERMS

The inhomogeneous terms in the ODEs for the eig
functions are defined in this appendix.

~a! f01: The inhomogeneous termf01 in Eq. ~20! is de-
fined. It is composed of six elements:

f015~ f 011, f 012, f 013, f 014, f 015, f 016!
T, ~A1!

where

f 011522 ReF r̃10S i ~au101bw10!1
dv10

dy D G
22 ReFr10i ~aũ101bw̃10!1 ṽ10

dr10

dy G , ~A2!

f 012522 ReFr00S i ~aũ101bw̃10!u101 ṽ10

du10

dy D G
22 ReF r̃10S i ~au002v!u101v10

du00

dy D G , ~A3!

f 013522 ReFr00S i ~aũ101bw̃10!v101 ṽ10

dv10

dy D G
22 Re@ r̃10i ~au002v!v10#, ~A4!
e
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-
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f 014522 Re@ r̃10i ~au002v!w10#

22 ReFr00S i ~aũ101bw̃10!w101 ṽ10

dw10

dy D G ,
~A5!

f 01552 Re@r10i ~ ãu002v!T̃10#22 ReFr00S i ~aũ10

1bw̃10!T101 ṽ10

dT10

dy D G22 ReS r10ṽ10

dT00

dy D
22 ReFgM1

2~g21! p̃10S i ~au101bw10!

1
dv10

dy D G , ~A6!

f 01652
2

gM1
2 Re~r10T̃10!. ~A7!

~b! f20: The inhomogeneous termf20 in Eq. ~22! is de-
fined. It is composed of six elements:

f205~ f 201, f 202, f 203, f 204, f 205, f 206!
T, ~A8!

where

f 20152r102i ~au101bw10!2
d~r10v10!

dy
, ~A9!

f 20252r00F i ~au101bw10!u101v10

du10

dy G
2r10F i ~au002v!u101v10

du00

dy G , ~A10!

f 20352r00F i ~au101bw10!v101v10

dv10

dy G
2r10i ~au002v!v10, ~A11!

f 20452r00F i ~au101bw10!w101v10

dw10

dy G
2r10i ~au002v!w10, ~A12!

f 20552r10i ~au002v!T102r10v10

dT00

dy

2r00F i ~au101bw10!T101v10

dT10

dy G
2gM1

2~g21!p10F i ~au101bw10!1
dv10

dy G , ~A13!

f 20652
1

gM1
2 r10T10. ~A14!

~c! f10 and f11: The inhomogeneous termsf10 and f11 in
Eq. ~24!. The elements of each are
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f1052S r00u101r10u00

r00u00u101p10

r00u00v10

r00u00w10

r00u00T101~g21!u10

0

D , ~A15!

f115~ f 111, f 112, f 113, f 114, f 115, f 116!
T, ~A16!

where

f 11152r10S i ~au011bw01!1
dv01

dy D2 r̃10S 2i ~au201bw20!1
dv20

dy D2r01S i ~au101bw10!1
dv10

dy D
1 r̃10i ~ ãu201bw20!2r202i ~aũ101bw̃10!2r20S 2 i ~ ãũ101bw̃10!1

dṽ10

dy D
12a Ir10u0112a Ir01u102v10

dr01

dy
2v01

dr10

dy
2 ṽ10

dr20

dy
2v20

dr̃10

dy
, ~A17!

f 11252r01i ~au002v!u102r00F i ~au011bw01!u101v01

du10

dy G2r00F2i ~aũ101bw̃10!u201 ṽ10

du20

dy G
2r00F2 i ~ ãu201bw20!ũ101v20

dũ10

dy G2r10F2 i ~ ãu101bw10!ũ101v10

dũ10

dy G
2r10F i ~aũ101bw̃10!u101 ṽ10

du10

dy G2 r̃102i ~a0u002v!u201r20i ~ ãu002v!ũ10

2 r̃10F i ~au101bw10!u101v10

du10

dy G12a I~r00u10u011r10u00u01!

2r00v10

du01

dy
2r01v10

du00

dy
2r10v01

du00

dy
2 r̃10v20

du00

dy
2r20ṽ10

du00

dy
, ~A18!

f 11352r01i ~au002v!v102 r̃102i ~au002v!v202r00F i ~au011bw01!v101v01

dv10

dy G
2r00F2i ~aũ101bw̃10!v201 ṽ10

dv20

dy G2r00F2 i ~ ãu201bw20!ṽ101v20

dṽ10

dy G
2r10F2 i ~ ãu101bw10!ṽ101v10

dṽ10

dy G2r10F i ~aũ101bw̃10!v101 ṽ10

dv10

dy G
2 r̃10F i ~au101bw10!v101v10

dv10

dy G1r20i ~ ãu002v!ṽ102r00v10

dv01

dy

12a I~r00u10v011r10u00v01!, ~A19!

f 11452r01i ~au002v!w102 r̃102i ~au002v!w201r20i ~ ãu002v!w̃10

2r00F i ~au011bw01!w101v01

dw10

dy G2r00v10

dw01

dy
2r00F2i ~aũ101bw̃10!w201 ṽ10

dw20

dy G
2r00F2 i ~ ãu201bw20!w̃101v20

dw̃10

dy G2r10F2 i ~ ãu101bw10!w̃101v10

dw̃10

dy G
2r10F i ~aũ101bw̃10!w101 ṽ10

dw10

dy G2 r̃10F i ~au101bw10!w101v10

dw10

dy G
12a I~r00u10w011r10u00w01!, ~A20!
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f 11552r01i ~au002v!T102 r̃102i ~au002v!T201r20i ~ ãu002v!T̃102r00F i ~au011bw01!T101v01

dT10

dy G
2r00F2i ~aũ101bw̃10!T201 ṽ10

dT20

dy G2r00F2 i ~ ãu201bw20!T̃101v20

dT̃10

dy
G

2r10F2 i ~ ãu101bw10!T̃101v10

dT̃10

dy
G2r10F i ~aũ101bw̃10!T101 ṽ10

dT10

dy G
2 r̃10F i ~au101bw10!T101v10

dT10

dy G12a I~r00u10T011r10u00T01!2r00v10

dT01

dy

2r01v10

dT00

dy
2r10v01

dT00

dy
2 r̃10v20

dT00

dy
2r20ṽ10

dT00

dy
2gM1

2~g21!p01F i ~au101bw10!1
dv10

dy G
2gM1

2~g21!p10F22a Iu011
dv01

dy G2gM1
2~g21!p̃10F2i ~au201bw20!1

dv20

dy G
2gM1

2~g21!p20F2 i ~ ãũ101bw̃10!1
dṽ10

dy G , ~A21!

f 11652
1

gM1
2 ~r01T101r10T011 r̃10T201r20T̃10!. ~A22!
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