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In this paper, we attempt to evaluate the newly-proposed PRNS procedures for near-wall 
turbulence prediction. The PRNS procedure is combined with the low-Reynolds number 
turbulent model (Abid’s version) to calculate the near-wall turbulent structures in two-
dimensional flat-plate boundary flows, two-dimensional and three-dimensional backard-
facing step flows. We have found that the PRNS procedure with the fixed model constant 
( ) generally predicts weaker turbulent structures as compared to its 
corresponding RANS model. It is suspected that the near-wall grid size may not be suitable 
for the PRNS calculations with 

38.0=cpR

38.0=cpR

                                                          

. More studies are surely needed on this subject. 
Furthermore, the capability and usefulness of the PRNS procedures on resolving large-scale 
energetic turbulent structures require further evaluations.     

I. Introduction 
Igh-Reynolds number turbulent flows pose significant computational challenges for CFD-aided design 
calculations of realistic aerospace system components. The Reynolds-Averaged Navier-Stokes (RANS) 

modeling, commonly used today for practical applications, has frequently proved to be poorly adapted to handle 
complex turbulent flows with massive separation. While the Large-Eddy Simulation (LES) procedure has shown the 
ability to resolve flow structures and achieve more accurate predictions, it is too costly for realistic engineering 
applications. As a comprise between RANS and LES, a class of hybrid RANS-LES methods has been proposed, 
among which detached eddy simulation (DES) has shown some impressive results for complex aerodynamic 
applications.1-3

H 

 
Unfortunately, the standard DES procedure introduces significant grid dependency into the RANS portion of the 
simulations, which requires the grid-spacing of wall grids in the tangential directions larger than the boundary layer 
thickness at that location. This is usually the lower limit for the DES grid resolution, which may easily be violated in 
industrial simulations. Further grid refinement below this limit can result in a grid induced-separation (GIS), as 
pointed out by Menter et al.4 In order to resolve this issue, a modified DES and other RANS-LES approaches might 
be necessary. One of the principal aims in the present paper is to evaluate the recently-proposed partially-resolved 
numerical simulation (PRNS)5-9 as a candidate that does not have the setbacks of the DES approach.  
 
PRNS is intended to provide a unified simulation strategy (from RANS to LES) for high Reynolds number complex 
turbulent flows.5, 6 The governing equations for the PRNS method are the temporally-filtered Navier-Stokes 
equations, in which the dependent variables can be construed as the statistical mean (as in RANS), or the partially 
resolved large-scale (as in LES), or the instaneous (as in DNS) values of turbulence, while the effects of unresolved 
scales are modeled based on the size of the temporal filtering. As pointed out by Shih and Liu5, various types of 
models (zero-, one- and two-equation models, etc.) such as those used in traditional RANS can be used for the 
unresolved stresses and fluxes. In their original papers,5, 6 Shih and Liu tested a high-Reynolds number k-ε model to 
model these terms, in which k, the kinetic energy of the unresolved scales, and ε, its dissipation rate are governed by 
the traditional RANS equations. However, a “resolution control parameter”,  has been introduced to regulate the cpR
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relative content of the resolved and unresolved scales. By fixing  during a PRNS calculation, Shih and Liu found 
that the grid dependency issues caused by spatial filtering could be avoided.  

cpR

 
The preliminary results presented by Shih and Liu5, 6 for pipe flow and LM6000 combustor are very encouraging, in 
the sense that the model fairly resolves the large-scale turbulence structures away from the wall region. However, 
their calculations did not captured the near-wall features because they used wall functions. Also, it was not discussed 
whether or not the “resolution control parameter”  should be regulated or kept fixed if the meshes were varied for 

a given physical problem. Shih and Liu used a value of 0.38 for  for a wide range of Reynolds number and 
reported a good agreement between PRNS results and results from experiments/DNS. It is the intention in the 
present work to evaluate the procedure for near-wall features using low-Reynolds number k-ε models for the 
unresolved stress calculations. The low-Reynolds number k-ε model by Abid

cpR

cpR

10 is used in our work for this purpose, 
and we investigate the performance of PRNS for near-wall flows. We are not aware of previous work on PRNS that 
has addressed the near-wall problem. We are also investigating the value of 0.38 used for  on its generality, with 
the hope of coming up with a fairly, globally optimum, value. 

cpR

II. PRNS Modeling 
The governing equations for the PRNS modeling are the temporally-filtering Navier-Stokes equations: 
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uS , and ρ, ui, T, p and e are the density, velocity, temperature, pressure and internal energy, 

respectively. In the terminology of PRNS averaging, the filtered quantities, φ    are defined in time domain as 
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and φ~ is its density-weighted counterpart. 
 
With a top-hat filtering function used for G, Equation (4) becomes 
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As ∆T→∞, Equation (5) becomes the traditional Reynolds-averaging. For a finite ∆T, Equation (5) represents 
mainly the large scales of turbulence. The PRNS averaging thus regulates the contents of resolved and unresolved 
turbulent scales by the size of the time intervals instead of the size of grids, which is different from the other hybrid 
RANS/LES models and provides the opportunity for grid-independent calculations.  
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 It is noted that in Equations (1) through (3), there are several unclosed terms, including the turbulent stress ( ijτ ), 

the turbulent heat fluxes ( ), the pressure-dilation correlation terms (iq kkpS ), and the compressible turbulence 

kinetic energy dissipation rates (
kkiiijij SSSS µµ

3
22 − ). The pressure-dilation correlation terms and compressible 

dissipation rates, which represent the effects of flow compressibility, are negligible for the current low Mach 
number flows11, 12. For the turbulent stress ( ijτ ) and the turbulent fluxes ( ), Shih and Liu used a high-Reynolds 

number k-ε model with the parameter
iq

cpR to regulate the contents of the resolved and unresolved turbulent scales as 
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where the model coefficients are 
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ε
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Tµ is the turbulence viscosity, ∆T is the temporal filter width, Tκ is the turbulent diffusivity,  is the turbulent 

Prandtl number, and 
tPr

µC is the standard model constant in the k-ε model. To account for the near-wall features, we 
use Abid’s low-Reynolds number k-ε model to model the turbulent kinetic energy, k and its dissipation rate, ε, which 
are obtained from 
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The model constants for Abid’s model are: 

   09.0=µC ,     

45.11 =εC ,        0.1=kσ , 

83.12 =εC ,        4.1=kσ .  
Also, we have 
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µ

ρ dk
k  and d is the distance to the nearest wall. 

 
It should be noted that the Reynolds-averaged stress, , has contributions from both the resolved and 

unresolved scales. Since the PRNS variables are time-filtered, quasi-stationary flow states are needed for calculating 
the Leonard stress for the resolved scales.

ijR

6     
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III. Numerical Method 
We use a high-order finite-difference scheme in a curvilinear coordinate system. In standard notations, the filtered 
equations can be written as 
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By using the implicit, approximately-factored finite-difference algorithm of Beam-Warming and employing 
Newton-like sub-iterations, we have the following numerical algorithms: 
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and superscripts “p” and “n” denote the sub-iteration steps and the time steps, respectively.  In the above equations, 
(ξ, η, ς) are the curvilinear coordinates and st∆ is the time step for the sub-iterations. Either a first or second-order 
temporal accuracy can be specified in the above iterative procedure by selecting 0φ =  or 1/ 2φ = , and p is the sub-

iteration index. For 1p = , and aspU U= n p →∞ , 1.p nU U +→  This dual time-step procedure is not only good for 
time-accurate simulations, but it also is  good to speed-up the convergence rate for a steady-state solution. The above 
flow solver is then coupled with the first-order, upwinding scheme to solve the transport equations for k and ε.  

IV. The Test Cases 
The first case uses a spatially-developing flat-plate boundary layer flow to evaluate the near wall performance of 

PRNS using a low-Reynolds number k-ε model. A flat-plate with leading-edge was initially immersed in a uniform 
flow with zero pressure gradient at  and  per unit length. The mean flow is two-
dimensional and there are no fluctuations imposed on the mean flows. The mesh size is 65 x 97. The flat plate is 
unity in length. Symmetry boundary conditions are imposed on a region of length x=0.333 in front of the plate. 
Computational domain height is approximately 1.0, minimum normal grid spacing at the wall is 1 × , and the 
grid is stretched at a rate of 1.18 until the vertical spacing just exceeds the horizontal spacing. The horizontal 
spacing is constant at . In this paper, no grid sensitivity studies have been performed and the first 
grid size used is assumed fine enough for typical RANS calculations (

3.0=∞Ma 6106Re ×=∞

610 −

0208333.0=∆x

2.0
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µ
ρ uyy , where u* is the friction 

velocity). Figure 1 shows the effects of on the mean profile at three spatial locations. The PRNS calculations 
shown here use . For comparison, Figure 1 also shows the results obtained from the Spalart-Allmaras (S-
A) model and the DES model. It can be seen that the PRNS velocity profiles are slightly higher than the theoretical 
profile (White

cpR
38.0=cpR

14), while the original Abid model ( =1.0) compares better with the theory. The DES model almost 
reproduces the results obtained from the original Spalart-Allmaras model. This is not surprising considering the fact 
that the transition grid size for the DES model is very big ( ) and most part of the boundary flows are 

cpR
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simply calculated by the near-wall RANS model.  Figure 2 compares the surface skin friction for various turbulent 
models with the theoretical curves (solid lines). It can be seen that the effect of  is to reduce the values of the 
skin friction. The difference between the PRNS’s predictions and the original Abid model’s is approximately 17%, 
but the difference is only 6%  compared to the theoretical  results (lower curve). Therefore, it seems that the values 
of  used in PRNS method do affect the near-wall predictions but in a mild way.  

cpR

cpR
 
The second test case is based on the backward-facing step flow from Driver and Seegmiller’s experiment.15 This 

flow has been used as an important test case in many RANS calculations for examining the effects of near-wall 
treatment on separated flows.16 In the experiment, several different upper wall inclinations were tested, but in the 
current simulation, the upper wall was kept horizontal (zero degree). The test conditions are , and 

 per unit step height, H. A one-zone mesh (165×185) is used for both Abid’s model and the PRNS 
calculations, and the computational domain extents from x/H=-4.0 upstream to x/H=35 (see Figure 3). Clustered 

grids are used near the solid walls with

128.0=Ma
37573Re =h

2.1
*

≈
⋅

≡+

µ
ρ uyy .  Since this flow is modeled using a single zone, the step 

itself is modeled using a viscous wall boundary around a hole. The same inlet density, velocity, and turbulent kinetic 
energy are used for both PRNS and Abid’s model calculations, which are interpolated from the flat-plate results 
calculated (above) using Abid’s model at the streamwise location with , and rescaled to match the 
experimental data. Figure 4 presents the prescribed inlet U-velocity and the turbulent kinetic energy compared to 

experimental data. The definition, 

6105.4Re ×=x

)(75.0 vvuuk +=  is used to calculate the turbulent kinetic energy of the 
experimental data. The inlet pressure was extrapolated from the interior of the domain. To specify the inlet turbulent 
dissipation rate for PRNS calculations, two approaches were tested: ε
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T µµ = . We found that the second approach works 

better for PRNS calculations, and are presented in the following. The primary re-attachment lengths from both the 
PRNS  and Abid’s model are listed in Table 1, where the numerical results from Menter’s SST model 
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17, Spalart-
Allmaras’s (S-A) model18 and DES models are also included here for comparison. The weaker turbulent viscosity 
(implied in the PRNS method based on Abid model and in the DES model with sm sition grid-size, 

100≈+
td ) seems to over-predict the re-attachment length. Similarly, the PRNS model based on the standard high-

Reynolds-number k-ε model (noted as HR model in the table) also over-predicts the re-attachment length. It is noted 
that for both the standard high-Reynolds-number k-ε model and its PRNS derivative, coarse grids (116×102) have 
been used and the near 25/* ≈⋅≡ µρ uy .  Figure 5 below compares the velocity vector plots 
from PRNS with RANS and DES results.  It clearly demonstrates that the PRNS models and th del with 

100≈+
td generate larger recirculation zones and that the streamlines around the recirculation zo

-w +

 
Table 1: Re-attachment lengths of the backward-facing step flows 

 
Model Abid PRNS 

(Abid) 
HR PRNS 

(HR) 
DES 

( ) 100≈td
DES 

( ) 2200≈td
S-A SST Exp 

Xr/H 6.00 8.25 6.00 8.50 10.20 6.25 5.75 5.25 6.25 

 
The prediction of the skin friction coefficient along the step wall by PRNS and various RANS and DES models 

are given in Figure 6. It can be seen that the PRNS models (based on low-Re k-ε model or high-Re k- ε model) can 
not accurately predict the location of re-attachment length, while their corresponding RANS models show a better 
prediction both near and away from the re-attachment points. It is observed that the DES model with also 
shows an oscillatory skin friction coefficient as the PRNS models. Figure 7 present the mean velocity profiles at two 
downstream locations (x/H=1.0 and x/H=2.5). It again shows that the PRNS treatment based on the low-Re k-ε 
model gives a behaviour that is similar to the one based on the high-Re k-ε model. Figure 8 presents the turbulent-
stress (

100≈+
td

uv− ) profiles at two typical downstream locations, of which one is located inside the recirculation zone 
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(X/H=2.5) and one is outside the recirculation zone (x/H=10). It is observed that Abid’s model performs a little 
better than the other models, which is the reason that drives us to use Abid’s model as the base model for PRNS. 
Figure 8 also shows that the PRNS model predicts a much weaker turbulent stress than the RANS models. 
Considering that PRNS is a procedure intended for large-eddy simulations of very complex turbulent flows, the total 
turbulent stresses should consist of two contributions, one is from the resolved scales (Leonard stress, ) and the 

other from the modeled unresolved scales (
ijL

ijτ ), i.e., ijijRANS LT τ+= .  Since we haven’t imposed any turbulent 
fluctuations in our 2D simulations, it is not very surprising that no large-scale turbulent structures occur in the 
simulated backward-facing step flows. In other words, this means that Leonard stresses are non-existent in our 
PRNS calculations, which explains why the turbulent stresses predicted by the PRNS calculations are much weaker.   

 
 It is our choice to simulate 3D backward-facing step flows with the hope that significant large-scale turbulent 
structures will occur and be captured by the PRNS procedures. The computational domain in our 3D calculations is 
a simple extension of the 2D geometry in the spanwise direction. The grid size is 165×185×22 with 1.0=zδ . It is 
noted that from Figures 9 and 10, both the 3D RANS and PRNS calculations produce only steady-state two-
dimensional flow structures, and the PRNS model predicts a weaker turbulent stress than the RANS model. Figure 
11 compares the friction coefficient obtained from 2D and 3D RANS and PRNS calculations. It is interesting to note 
that the PRNS calculations predict better results up to X/H=5, and then show a lag in the development of the friction 
coefficient. The lack of 3D large-scale energetic turbulent structures, somewhat surprising, is believed be the reason 
for the weaker turbulent stress and large recirculation zones for the PRNS calculations. It is worthy to point out that 
in our 3D simulations, we didn’t impose any turbulent fluctuations. Due to the computer costs, we haven’t 
investigated the situations with turbulent fluctuations imposed initially. It is also noted that, in the current 
calculations, we use the same grid sizes for both the RANS and the PRNS calculations. We thus suspect that the grid 
sizes are unsuitable for the PRNS calculations to develop the unsteady 3D turbulent structures. Shih and Liu19 
provide a model (Equation (16) in the noted reference) to guide the choice of the grid size or the PRNS model 
constant, . To illustrate the results presented in Figure 12, Eq. 16 in Shih and LiucpR 19 is reproduced here as 

2
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where  are the turbulent integral length scale, which is of the order of , and ∆ is the grid size. For the 

first-order estimations, we assume  in Eq. (13), and . Figure 12 presents the lower 

limits of the PRNS model constants,  , at X/H=2.5 with 

RANSl ε/2/3k

PRNSRANS uu = ε/2/3kClRANS ⋅=

cpR 1=C  and  09.0=C .  It can be seen from this figure 
that the grids used may not be suitable for the PRNS calculations with 38.0=cpR   at locations near the wall and 
other regions in the free-stream. 
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Figure 1(a): Normalized mean profile as a function of 
µρ /•+ = yuy  at  for spatially-  6105.1Re ×=x

developing flat-plate boundary layer flow. 
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Figure 1(b): Normalized mean profile as a function of 
µρ /•+ = yuy  at  for spatially-  6100.3Re ×=x

developing flat-plate boundary layer flow.. 
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Figure 2: Comparison of numerical friction 
coefficients with turbulent boundary flow theory for 
spatially-developing flat-plate boundary layer flow. 
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Figure 1(c): Normalized mean profile as a function of 
µρ /•+ = yuy  at  for spatially-  6105.4Re ×=x

developing flat-plate boundary layer flow.. 
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Figure 4(a): Inlet stream-wise velocity profiles for the 
PRNS and RANS calculations. 
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Figure 3: Mesh system for the backward-facing step 
flow (165×183). 
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Figure 4(b): Inlet turbulent kinetic energy profile for 
both the PRNS and RANS calculations.  
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Figure 5 (a): Velocity vector plot using Abid’s low-Re 
k-ε model. 
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Figure 5 (b): Velocity vector plot for PRNS  
model based on Abid’s low-Re k-ε model. 
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Figure 5 (c): Velocity vector plot for standard high-Re
k-ε model.
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Figure 5 (d): Velocity vector plot for PRNS  
model based on high-Re k-ε model. 
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Figure 5 (e): Velocity vector plot for DES model  
using a big transition grid-size ( d  =2400). +
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Figure 6: Friction coefficient for the step wall  
downstream of the step. 
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Figure 5 (f): Velocity vector plot for DES model  
using a small transition grid-size ( d  =100). +
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Figure 7(b): Mean velocity profiles at x/H=2.5 
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Figure 7(a): Mean velocity profiles at x/H=1.0 
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Figure 8(b): Turbulent-stress profiles at x/H=10 in 2D 
calculations 

0 2 4 6 8 10 12 14
Ruv

0

1

2

3

4

5

y/
h

Abid
SST
Exp
S-A
PRNS

X/H=2.5

Figure 8(a): Turbulent-stress profiles at x/H=2.5 in 
2D calculations 
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Figure 9(b): Iso-surface of vorticity ( | 25.0|=ω ) 
from 3D calculations with PRNS. 
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Figure 9(a): Iso-surface of vorticity ( | 25.0|=ω ) 
from 3D calculations with RANS. 
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Figure 10(a): Comparison of turbulent-stress 
profiles at x/H=2.5. 
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Figure 10(b): Comparison of turbulent-stress profiles 
at x/H=10. 
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Figure 12: Distributions of the grid-size limited PRNS 
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Figure 11: Comparison of the friction coefficient for 
the step wall downstream of the step. 
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